Showing 20 articles starting at article 841
< Previous 20 articles Next 20 articles >
Categories: Geoscience: Geochemistry, Space: Astronomy
Published Giant sea salt aerosols play major role in Hawai'i's coastal clouds, rain



A new study from atmospheric scientists revealed that the coastline can produce up to five times the concentration of giant sea salt aerosols compared to the open ocean and that coastal clouds may contain more of these particles than clouds over the open ocean -- affecting cloud formation and rain around the Hawaiian Islands.
Published Recycled phosphorus fertilizer reduces nutrient leaching, maintains yield



A promising new form of ammonium phosphate fertilizer has been field-tested. The fertilizer, struvite, offers a triple win for sustainability and crop production, as it recycles nutrients from wastewater streams, reduces leaching of phosphorus and nitrogen in agricultural soils, and maintains or improves soybean yield compared to conventional phosphorus fertilizers.
Published Scientists find both potential threats and promising resources in the thriving colonies of bacteria and fungi on ocean plastic trash



Scientists have found both potential threats and promising resources in the thriving colonies of bacteria and fungi on plastic trash washed up on shores.
Published Deoxygenation levels similar to today's played a major role in marine extinctions during major past climate change event



Scientists have made a surprising discovery that sheds new light on the role that oceanic deoxygenation (anoxia) played in one of the most devastating extinction events in Earth's history. Their finding has implications for current day ecosystems -- and serves as a warning that marine environments are likely more fragile than apparent. New research, published today in leading international journal Nature Geosciences, suggests that oceanic anoxia played an important role in ecosystem disruption and extinctions in marine environments during the Triassic--Jurassic mass extinction, a major extinction event that occurred around 200 million years ago. Surprisingly however, the study shows that the global extent of euxinia (an extreme form of de-oxygenated conditions) was similar to the present day.
Published New method verifies carbon capture in concrete



Carbon capture is essential to reduce the impact of human carbon dioxide emissions on our climate. Researchers have developed a method to confirm whether carbon in concrete originates from the raw materials, or from carbon in the air which has been trapped when it reacts with the concrete to form the mineral calcium carbonate. By measuring the ratio of certain carbon isotopes in concrete that had been exposed to the air and concrete that hadn't, the team could successfully verify that direct air carbon capture had occurred. This method could be useful for the industrial sector and countries looking to offset their carbon emissions.
Published New way of searching for dark matter



Wondering whether whether Dark Matter particles actually are produced inside a jet of standard model particles, led researchers to explore a new detector signature known as semi-visible jets, which scientists never looked at before.
Published Alien haze, cooked in a lab, clears view to distant water worlds



Scientists have simulated conditions that allow hazy skies to form in water-rich exoplanets, a crucial step in determining how haziness muddles important telescope observations for the search of habitable worlds beyond the solar system.
Published Separating out signals recorded at the seafloor



Research shows that variations in pyrite sulfur isotopes may not represent the global processes that have made them such popular targets of analysis and interpretation. A new microanalysis approach helps to separate out signals that reveal the relative influence of microbes and that of local climate.
Published Study provides fresh insights into antibiotic resistance, fitness landscapes



A new study suggests that E. coli bacteria may have a higher capability to evolve antibiotic resistance than previously believed. Researchers mapped possible mutations in an essential E. coli protein involved in antibiotic resistance and found that 75% of evolutionary paths led to high antibiotic resistance, challenging existing theories about fitness landscapes in evolutionary biology. This discovery may have broader implications for understanding adaptation and evolution in various fields.
Published Telescope Array detects second highest-energy cosmic ray ever



In 1991, an experiment detected the highest-energy cosmic ray ever observed. Later dubbed the Oh-My-God particle, the cosmic ray’s energy shocked astrophysicists. Nothing in our galaxy had the power to produce it, and the particle had more energy than was theoretically possible for cosmic rays traveling to Earth from other galaxies. Simply put, the particle should not exist. On May 27, 2021, the Telescope Array experiment detected the second-highest extreme-energy cosmic ray. The newly dubbed Amaterasu particle deepens the mystery of the origin, propagation and particle physics of rare, ultra-high-energy cosmic rays.
Published NASA's Webb reveals new features in heart of Milky Way



The latest image from NASA's James Webb Space Telescope shows a portion of the dense center of our galaxy in unprecedented detail, including never-before-seen features astronomers have yet to explain. The star-forming region, named Sagittarius C (Sgr C), is about 300 light-years from the Milky Way's central supermassive black hole, Sagittarius A*.
Published 'Triple star' discovery could revolutionize understanding of stellar evolution



A ground-breaking new discovery could transform the way astronomers understand some of the biggest and most common stars in the Universe. Research by PhD student Jonathan Dodd and Professor René Oudmaijer, from the University's School of Physics and Astronomy, points to intriguing new evidence that massive Be stars -- until now mainly thought to exist in double stars -- could in fact be 'triples'. The remarkable discovery could revolutionise our understanding of the objects -- a subset of B stars -- which are considered an important 'test bed' for developing theories on how stars evolve more generally.
Published Sophisticated swarming: Bacteria support each other across generations



When bacteria build communities, they cooperate and share nutrients across generations. Researchers have been able to demonstrate this for the first time using a newly developed method. This innovative technique enables the tracking of gene expression during the development of bacterial communities over space and time.
Published Effect of aerosol particles on clouds and the climate captured better



Global measurements and model calculations show that the complex relationship between the chemistry and climate impact of aerosol particles can be successfully captured by a simple formula.
Published Hydrogen detected in lunar samples, points to resource availability for space exploration



Researchers have discovered solar-wind hydrogen in lunar samples, which indicates that water on the surface of the Moon may provide a vital resource for future lunar bases and longer-range space exploration.
Published Dwarf galaxies use 10-million-year quiet period to churn out stars



If you look at massive galaxies teeming with stars, you might be forgiven in thinking they are star factories, churning out brilliant balls of gas. But actually, less evolved dwarf galaxies have bigger regions of star factories, with higher rates of star formation. Now, University of Michigan researchers have discovered the reason underlying this: These galaxies enjoy a 10-million-year delay in blowing out the gas cluttering up their environments. Star-forming regions are able to hang on to their gas and dust, allowing more stars to coalesce and evolve. In these relatively pristine dwarf galaxies, massive stars--stars about 20 to 200 times the mass of our sun--collapse into black holes instead of exploding as supernovae. But in more evolved, polluted galaxies, like our Milky Way, they are more likely to explode, thereby generating a collective superwind. Gas and dust get blasted out of the galaxy, and star formation quickly stops.
Published Protect delicate polar ecosystems by mapping biodiversity



Concerted action is required to mitigate the impact of warming on polar ecosystems and sustainably manage these unique habitats.
Published Why the vast supergalactic plane is teeming with only one type of galaxy



Our own Milky Way galaxy is part of a much larger formation, the local Supercluster structure, which contains several massive galaxy clusters and thousands of individual galaxies. Due to its pancake-like shape, which measures almost a billion light years across, it is also referred to as the Supergalactic Plane. Why is the vast supergalactic plane teeming with only one type of galaxies? This old cosmic puzzle may now have been solved.
Published New percussion method to detect pipeline elbow erosion



An engineering research team is pioneering a new method, based on percussion, to detect pipeline elbow erosion to prevent economic losses, environmental pollution and other safety issues.
Published Massive 2022 eruption reduced ozone layer levels



The Hunga Tonga-Hunga Ha'apai volcano changed the chemistry and dynamics of the stratosphere in the year following the eruption, leading to unprecedented losses in the ozone layer of up to 7% over large areas of the Southern Hemisphere.