Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Computer Science: Virtual Reality (VR)
Published How to use AI for discovery -- without leading science astray



In the same way that chatbots sometimes 'hallucinate,' or make things up, machine learning models designed for scientific applications can sometimes present misleading or downright false results. Researchers now present a new statistical technique for safely using AI predictions to test scientific hypotheses.
Published Chemists image basic blocks of synthetic polymers



Researchers have developed a new method to image polymerization catalysis reactions one monomer at a time.
Published Scientists use quantum biology, AI to sharpen genome editing tool



Scientists used their expertise in quantum biology, artificial intelligence and bioengineering to improve how CRISPR Cas9 genome editing tools work on organisms like microbes that can be modified to produce renewable fuels and chemicals.
Published Liquid metals shake up century-old chemical engineering processes



Liquid metals could be the long-awaited solution to 'greening' the chemical industry, according to researchers who tested a new technique they hope can replace energy-intensive chemical engineering processes harking back to the early 20th century.
Published Machine learning gives users 'superhuman' ability to open and control tools in virtual reality



Researchers have developed a virtual reality application where a range of 3D modelling tools can be opened and controlled using just the movement of a user's hand.
Published Photo battery achieves competitive voltage



Researchers have developed a monolithically integrated photo battery using organic materials. The photo battery achieves an unprecedented high discharge potential of 3.6 volts. The system is capable of powering miniature devices.
Published Charged 'molecular beasts' the basis for new compounds



Mass spectrometers are high-tech machines that play an important role in our society. They are highly sensitive analytical instruments that are indispensable in areas such as medical diagnostics, food quality control and the detection of hazardous chemical substances. A research group is working to modify mass spectrometers so that they can be used for a completely different purpose: the chemical synthesis of new molecules.
Published Self-powered microbial fuel cell biosensor for monitoring organic freshwater pollution



Biodegradable waste from plant and animal sources released into freshwater ecosystems is a significant environmental concern. Nonetheless, current methods for assessing water quality seem more or less impractical due to their complexity and high costs. In a promising development, a team of researchers has successfully constructed a self-sustaining and buoyant biosensor using inexpensive carbon-based materials for monitoring water quality at the inlets of freshwater lakes and rivers.
Published Chemists make breakthrough in drug discovery chemistry



Chemists offer two new methods to develop a way to easily replace a carbon atom with a nitrogen atom in a molecule. The findings could make it easier to develop new drugs.
Published Breakthrough discovery sheds light on heart and muscle health



The human heart, often described as the body's engine, is a remarkable organ that tirelessly beats to keep us alive. At the core of this vital organ, intricate processes occur when it contracts, where thick and thin protein-filaments interact within the sarcomere, the fundamental building block of both skeletal and heart muscle cells. Any alterations in thick filament proteins can have severe consequences for our health, leading to conditions such as hypertrophic cardiomyopathy and various other heart and muscle diseases.
Published New Nijmegen method reveals hidden genetic variations



Many hidden genetic variations can be detected with Chameleolyser, a new method. The information is already yielding new patient diagnoses and may also lead to the discovery of as yet unknown disease genes.
Published Efficient biohybrid batteries



Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.
Published New frequency comb can identify molecules in 20-nanosecond snapshots



Researchers have developed a device that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth.
Published 'Plug and play' nanoparticles could make it easier to tackle various biological targets



Engineers have developed modular nanoparticles that can be easily customized to target different biological entities such as tumors, viruses or toxins. The surface of the nanoparticles is engineered to host any biological molecules of choice, making it possible to tailor the nanoparticles for a wide array of applications, ranging from targeted drug delivery to neutralizing biological agents.
Published How to protect biocatalysts from oxygen



There are high hopes for hydrogen as the key to the energy transition. A specific enzyme group found in algae and in bacteria can produce molecular hydrogen simply by catalyzing protons and electrons. However, the enzyme group is so sensitive to oxygen that commercial use of the hydrogen produced by this process as a green energy source is not yet possible. Researchers have now increased the oxygen stability of a hydrogen-producing enzyme by genetically generated channel blockages.
Published Virtual meetings tire people because we're doing them wrong



New research suggests sleepiness during virtual meetings is caused by mental underload and boredom. Earlier studies suggested that fatigue from virtual meetings stems from mental overload, but new research shows that sleepiness during virtual meetings might actually be a result of mental underload and boredom.
Published Cat-ching criminals with DNA from pet hairs



Cat hair could be the purr-fect way to catch criminals, according to researchers.
Published Robot stand-in mimics movements in VR



Researchers have developed a souped-up telepresence robot that responds automatically and in real-time to a remote user's movements and gestures made in virtual reality.
Published DNA Origami nanoturbine sets new horizon for nanomotors



Researchers introduce a pioneering breakthrough in the world of nanomotors -- the DNA origami nanoturbine. This nanoscale device could represent a paradigm shift, harnessing power from ion gradients or electrical potential across a solid-state nanopore to drive the turbine into mechanical rotations. The core of this pioneering discovery is the design, construction, and driven motion of a 'DNA origami' turbine, which features three chiral blades, all within a minuscule 25-nanometer frame, operating in a solid-state nanopore. By ingeniously designing two chiral turbines, researchers now have the capability to dictate the direction of rotation, clockwise or anticlockwise.
Published Simulating cold sensation without actual cooling



The perception of persistent thermal sensations, such as changes in temperature, tends to gradually diminish in intensity as our bodies become accustomed to the temperature. This phenomenon leads to a shift in our perception of temperature when transitioning between different scenes in a virtual environment. Researchers have now developed a technology to generate a virtual cold sensation via a non-contact method without physically altering the skin temperature.