Showing 20 articles starting at article 501
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Computer Science: Virtual Reality (VR)
Published Greener batteries



Our modern rechargeable batteries, such as lithium-ion batteries, are anything but sustainable. One alternative is organic batteries with redox-organic electrode materials (OEMs), which can be synthesized from natural 'green' materials. A team has now introduced a new OEM for aqueous organic high-capacity batteries that can be easily and cheaply recycled.
Published Reinforcement learning: From board games to protein design



An AI strategy proven adept at board games like Chess and Go, reinforcement learning, has now been adapted for a powerful protein design program. The results show that reinforcement learning can do more than master board games. When trained to solve long-standing puzzles in protein science, the software excelled at creating useful molecules. In one experiment, proteins made with the new approach were found to be more effective at generating useful antibodies in mice than were previous methods. If this method is applied to the right research problems, it likely could accelerate progress in a variety of scientific fields.
Published AI system can generate novel proteins that meet structural design targets



A new machine-learning system can generate protein designs with certain structural features, and which do not exist in nature. These proteins could be utilized to make materials that have similar mechanical properties to existing materials, like polymers, but which would have a much smaller carbon footprint.
Published Surface steers signals for next-gen networks



5G signals known as millimeter-wave carry enormous amounts of information but are very easy to block. A new device helps these signals get around obstacles posed by walls, furniture and people.
Published New findings pave the way for stable organic solar cells that may enable cheap and renewable electricity generation



Organic solar cells show great promise for clean energy applications. However, photovoltaic modules made from organic semiconductors do not maintain their efficiency for long enough under sunlight for real world applications. Scientists have now revealed an important reason why organic solar cells rapidly degrade under operation. This new insight will drive the design of more stale materials for organic semiconductor-based photovoltaics, thus enabling cheap and renewable electricity generation.
Published Novel nanocages for delivery of small interfering RNAs



Small interfering RNAs (siRNAs) are novel therapeutics that can be used to treat a wide range of diseases. This has led to a growing demand for selective, efficient, and safe ways of delivering siRNA in cells. Now, in a cooperation between the Universities of Amsterdam and Leiden, researchers have developed dedicated molecular nanocages for siRNA delivery. In a paper just out in the Journal Chem they present nanocages that are easy to prepare and display tuneable siRNA delivery characteristics.
Published Using machine learning to find reliable and low-cost solar cells



Hybrid perovskites are organic-inorganic molecules that have received a lot of attention over the past 10 years for their potential use in renewable energy. Some are comparable in efficiency to silicon for making solar cells, but they are cheaper to make and lighter, potentially allowing a wide range of applications, including light-emitting devices. However, they tend to degrade way more readily than silicon when exposed to moisture, oxygen, light, heat, and voltage. Researchers used machine learning and high-throughput experiments to identify perovskites with optimal qualities out of the very large field of possible structures.
Published A solar hydrogen system that co-generates heat and oxygen



Researchers have built a pilot-scale solar reactor that produces usable heat and oxygen, in addition to generating hydrogen with unprecedented efficiency for its size.
Published Luminous molecules



Twisted molecules play an important role in the development of organic light-emitting diodes. A team of chemists has managed to create these compounds with exactly the three-dimensional structure that they wanted. In so doing, they are smoothing the path for new and better light sources.
Published Scientists use peroxide to peer into metal oxide reactions



Researchers to get a better look at how peroxides on the surface of copper oxide promote the oxidation of hydrogen but inhibit the oxidation of carbon monoxide, allowing them to steer oxidation reactions.
Published Toward tunable molecular switches from organic compounds



Newly synthesized organic molecules can be tuned to emit different colors depending on their molecular structures in crystal form.
Published New atomic-scale understanding of catalysis could unlock massive energy savings



In an advance they consider a breakthrough in computational chemistry research, chemical engineers have developed a model of how catalytic reactions work at the atomic scale. This understanding could allow engineers and chemists to develop more efficient catalysts and tune industrial processes -- potentially with enormous energy savings, given that 90% of the products we encounter in our lives are produced, at least partially, via catalysis.
Published Long-forgotten equation provides new tool for converting carbon dioxide



To manage atmospheric carbon dioxide and convert the gas into a useful product, scientists have dusted off an archaic -- now 120 years old -- electrochemical equation.
Published Technology advance paves way to more realistic 3D holograms for virtual reality and more



Researchers have developed a new way to create dynamic ultrahigh-density 3D holographic projections. They now describe their new approach, called three-dimensional scattering-assisted dynamic holography (3D-SDH). They show that it can achieve a depth resolution more than three orders of magnitude greater than state-of-the-art methods for multiplane holographic projection.
Published DMI allows magnon-magnon coupling in hybrid perovskites



An international group of researchers has created a mixed magnon state in an organic hybrid perovskite material by utilizing the Dzyaloshinskii--Moriya-Interaction (DMI). The resulting material has potential for processing and storing quantum computing information.
Published Scientists use computational modeling to design 'ultrastable' materials



Researchers developed a computational approach to predict which metal-organic framework (MOF) structures will be the most stable, and therefore the best candidates for applications such as capturing greenhouse gases.
Published Discovery of crucial clue to accelerate development of carbon-neutral porous materials



A recent study has provided a library of those various molecular clusters for future metal building blocks of MOFs, and suggested practical synthetic strategies.
Published Major storage capacity in water-based batteries



Chemical engineers have discovered a 1,000% difference in the storage capacity of metal-free, water-based battery electrodes.
Published Strong ultralight material could aid energy storage, carbon capture



Materials scientists showed that fine-tuning interlayer interactions in a class of 2D polymers can determine the materials' loss or retention of desirable mechanical properties in multilayer or bulk form.
Published Plastic transistor amplifies biochemical sensing signal



New transistor technology boosts the body's electrochemical signals by 1,000 times, enabling diagnostic and disease-monitoring implants.