Showing 20 articles starting at article 621
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Computer Science: Virtual Reality (VR)
Published Researchers develop solid-state thermal transistor for better heat management



A team of researchers has unveiled a first-of-its-kind stable and fully solid-state thermal transistor that uses an electric field to control a semiconductor device's heat movement. The group's study details how the device works and its potential applications. With top speed and performance, the transistor could open new frontiers in heat management of computer chips through an atomic-level design and molecular engineering. The advance could also further the understanding of how heat is regulated in the human body.
Published Stronger, stretchier, self-healing plastic



An innovative plastic, stronger and stretchier than the current standard type and which can be healed with heat, remembers its shape and partially biodegradable, has been developed. They created it by adding the molecule polyrotaxane to an epoxy resin vitrimer, a type of plastic. Named VPR, the material can hold its form and has strong internal chemical bonds at low temperatures.
Published Making electric vehicles last



In the realm of electric vehicles, powered by stored electric energy, the key lies in rechargeable batteries capable of enduring multiple charge cycles. Lithium-ion batteries have been the poster child for this application. However, due to limitations in energy storage capacity and other associated challenges, the focus has shifted to an intriguing alternative known as dual-ion batteries (DIBs).
Published 'Lab on a chip' genetic test device can identify viruses within three minutes with top-level accuracy



Compact genetic testing device could be used to detect a range of pathogens, or conditions including cancer.
Published Self-powered microbial fuel cell biosensor for monitoring organic freshwater pollution



Biodegradable waste from plant and animal sources released into freshwater ecosystems is a significant environmental concern. Nonetheless, current methods for assessing water quality seem more or less impractical due to their complexity and high costs. In a promising development, a team of researchers has successfully constructed a self-sustaining and buoyant biosensor using inexpensive carbon-based materials for monitoring water quality at the inlets of freshwater lakes and rivers.
Published Chemists make breakthrough in drug discovery chemistry



Chemists offer two new methods to develop a way to easily replace a carbon atom with a nitrogen atom in a molecule. The findings could make it easier to develop new drugs.
Published Efficient biohybrid batteries



Formic acid, which can be produced electrochemically from carbon dioxide, is a promising energy carrier. A research team has now developed a fast-charging hybrid battery system that combines the electrochemical generation of formic acid as an energy carrier with a microbial fuel cell. This novel, fast-charging biohybrid battery system can be used to monitor the toxicity of drinking water, just one of many potential future applications.
Published Humans are disrupting natural 'salt cycle' on a global scale, new study shows



A new paper revealed that human activities are making Earth's air, soil and freshwater saltier, which could pose an 'existential threat' if current trends continue. Geologic and hydrologic processes bring salts to Earth's surface over time, but human activities such as mining and land development are rapidly accelerating this natural 'salt cycle.'
Published Photography: One-stop solution for shaping and outlining objects



A joint research team has developed a dual metalens that can switch between shooting modes based on light conditions.
Published Microplastics' shape determines how far they travel in the atmosphere



Micron-size microplastic debris can be carried by the jet stream across oceans and continents, and their shape plays a crucial role in how far they travel.
Published New frequency comb can identify molecules in 20-nanosecond snapshots



Researchers have developed a device that can detect the presence of specific molecules in a sample every 20 nanoseconds, or billionths of a second. With this new capability, researchers can potentially use frequency combs to better understand the split-second intermediate steps in fast-moving processes ranging from the workings of hypersonic jet engines to the chemical reactions between enzymes that regulate cell growth.
Published Engineers develop an efficient process to make fuel from carbon dioxide



Researchers developed an efficient process that can convert carbon dioxide into formate, a nonflammable liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity.
Published How robots can help find the solar energy of the future



To quickly and accurately characterize prospective materials for use in solar energy, researchers built an automated system to perform laboratory experiments and used machine learning to help analyze the data they recorded. Their goal is to identify semiconductor materials for use in photovoltaic solar energy, which are highly efficient and have low toxicity.
Published Virtual meetings tire people because we're doing them wrong



New research suggests sleepiness during virtual meetings is caused by mental underload and boredom. Earlier studies suggested that fatigue from virtual meetings stems from mental overload, but new research shows that sleepiness during virtual meetings might actually be a result of mental underload and boredom.
Published Robot stand-in mimics movements in VR



Researchers have developed a souped-up telepresence robot that responds automatically and in real-time to a remote user's movements and gestures made in virtual reality.
Published A superatomic semiconductor sets a speed record



The search is on for better semiconductors. A team of chemists describes the fastest and most efficient semiconductor yet: a superatomic material called Re6Se8Cl2.
Published A potentially cheaper and 'cooler' way for hydrogen transport



Researchers have developed a new hydrogen energy carrier material capable storing hydrogen energy efficiently and potentially more cheaply. Each molecule can store one electron from hydrogen at room temperature, store it for up the three months, and can be its own catalyst to extract said electron. Moreover, as the compound is made primarily of nickel, its cost is relatively low.
Published Do or dye: Synthetic colors in wastewater pose a threat to food chains worldwide



Dyes widely used in the textile, food and pharmaceutical industries pose a pressing threat to plant, animal and human health, as well as natural environments around the world, a new study has found. Billions of tons of dye-containing wastewater enter water systems every year, and a group of researchers say that new sustainable technologies including new membrane-based nano-scale filtration are needed to solve the issue, adding that legislation is needed to compel industrial producers to eliminate colorants before they reach public sewage systems or waterways.
Published Diapers can be recycled 200 times faster with light



More than 100,000 tons of diapers are disposed of annually in Germany. Vast amounts of valuable resources, such as diaper liners, end up in the trash. The liners consist of special polymers, so-called superabsorbers. Researchers have now succeeded in considerably improving their complex recycling process. They use UV radiation to degrade the chemical chains that keep the polymers together. No chemicals are needed. Recycling at room temperature is 200 times faster than conventional recycling. The recycled polymers can then be processed to new adhesives and dyes.
Published Sunflower extract fights fungi to keep blueberries fresh



Opening a clamshell of berries and seeing them coated in fuzzy mold is a downer. And it's no small problem. Gray mold and other fungi, which cause fruit to rot, lead to significant economic losses and food waste. Now, researchers report that compounds from sunflower crop waste prevented rotting in blueberries. They suggest the food industry could use these natural compounds to protect against post-harvest diseases.