Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

The thinnest lens on Earth, enabled by excitons      (via sciencedaily.com)     Original source 

Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.

Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Theoretical quantum speedup with the quantum approximate optimization algorithm      (via sciencedaily.com)     Original source 

Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.

Computer Science: General Computer Science: Quantum Computers
Published

Modular, scalable hardware architecture for a quantum computer      (via sciencedaily.com)     Original source 

Researchers demonstrated a scalable, modular hardware platform that integrates thousands of interconnected qubits onto a customized integrated circuit. This 'quantum-system-on-chip' (QSoC) architecture enables them to precisely tune and control a dense array of qubits.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Editing without 'cutting': Molecular mechanisms of new gene-editing tool revealed      (via sciencedaily.com)     Original source 

New research has determined the spatial structure of various processes of a novel gene-editing tool called 'prime editor.' Functional analysis based on these structures also revealed how a 'prime editor' could achieve reverse transcription, synthesizing DNA from RNA, without 'cutting' both strands of the double helix. Clarifying these molecular mechanisms contributes greatly to designing gene-editing tools accurate enough for gene therapy treatments.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Researchers create materials with unique combo of stiffness, thermal insulation      (via sciencedaily.com)     Original source 

Researchers have demonstrated the ability to engineer materials that are both stiff and capable of insulating against heat. This combination of properties is extremely unusual and holds promise for a range of applications, such as the development of new thermal insulation coatings for electronic devices.

Chemistry: Organic Chemistry
Published

Solving the problems of proton-conducting perovskites for next-generation fuel cells      (via sciencedaily.com)     Original source 

As a newly developed perovskite with a large amount of intrinsic oxygen vacancies, BaSc0.8W0.2O2.8 achieves high proton conduction at low and intermediate temperatures, report scientists. By the donor doping of large W6+, this material can take up more water to increase its proton concentration, as well as reduce the proton trapping through electrostatic repulsion between the dopant and proton. These findings could pave the way to the rational design of novel perovskites for protonic ceramic fuel cells (PCFCs) and electrolysis cells (PCECs).

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Fossil Fuels Energy: Technology Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Controlling water, transforming greenhouse gases      (via sciencedaily.com)     Original source 

Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Physics: Optics
Published

Observing mammalian cells with superfast soft X-rays      (via sciencedaily.com)     Original source 

Researchers have developed a new technique to view living mammalian cells. The team used a powerful laser, called a soft X-ray free electron laser, to emit ultrafast pulses of illumination at the speed of femtoseconds, or quadrillionths of a second. With this they could capture images of carbon-based structures in living cells for the first time, before the soft X-ray radiation damaged them.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

More than spins: Exploring uncharted territory in quantum devices      (via sciencedaily.com)     Original source 

Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General Physics: Quantum Physics
Published

Shedding light on the chemical enigma of sulfur trioxide in the atmosphere      (via sciencedaily.com)     Original source 

Researchers discovered that sulfur trioxide can form products other than sulfuric acid in the atmosphere by interacting with organic and inorganic acids. These previously uncharacterized acid sulfuric anhydride products are almost certainly key contributors to atmospheric new particle formation and a way to efficiently incorporate carboxylic acids into atmospheric nanoparticles. Better prediction of aerosol formation can help curb air pollution and reduce uncertainties concerning climate change.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Producing novel liquid crystals by stacking antiaromatic units      (via sciencedaily.com)     Original source 

In a recent study, researchers developed modified norcorrole molecules whose side chains favored the formation of columnar -stacking structures. Using these compounds, they produced liquid crystals with high electrical conductivity and thermotropic properties. Their findings open up new design avenues for materials useful in electronics, sensing, optics, and biomedicine.

Chemistry: General Chemistry: Organic Chemistry
Published

Unlocking complex sulfur molecules: Novel approach for synthesis of functionalized benzenethiol equivalents      (via sciencedaily.com)     Original source 

Organosulfur skeletons are crucial in many fields, including pharmaceuticals and electronics. Synthesizing organosulfur skeletons requires o-bromobenzenethiols. However, conventional methods face challenges due to quick oxidation and formation of highly reactive intermediates. Researchers have now developed a new method for synthesizing o-bromobenzenethiols from aryne intermediates via bromothiolation. This method can pave the way for the synthesis of new organosulfur compounds with applications in diverse fields.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Robotics Research
Published

Researchers design new metal-free porous framework materials      (via sciencedaily.com)     Original source 

Researchers have used computational design methods to develop non-metal organic porous framework materials, with potential applications in areas such as catalysis, water capture or hydrogen storage.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene
Published

Scientists develop new battery-free lactic acid sensor      (via sciencedaily.com)     Original source 

Scientists have created a new type of chemosensor (demonstrated for lactic acid sensing) which functions with electricity but without the need for reference electrodes or battery power.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

Ethylene from CO2: Building-kit catalyst      (via sciencedaily.com)     Original source 

Use of the greenhouse gas CO2 as a chemical raw material would not only reduce emissions, but also the consumption of fossil feedstocks. A novel metal-free organic framework could make it possible to electrocatalytically produce ethylene, a primary chemical raw material, from CO2. Nitrogen atoms with a particular electron configuration play a critical role for the catalyst.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New crystal production method could enhance quantum computers and electronics      (via sciencedaily.com)     Original source 

Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.

Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling
Published

How AI helps programming a quantum computer      (via sciencedaily.com)     Original source 

Researchers have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to execute a quantum operation. The study marks a significant step forward in unleashing the full extent of quantum computing.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

By listening, scientists learn how a protein folds      (via sciencedaily.com)     Original source 

By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology
Published

Blueprints of self-assembly      (via sciencedaily.com)     Original source 

Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.