Showing 20 articles starting at article 121
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Computer Science: Quantum Computers
Published The thinnest lens on Earth, enabled by excitons



Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.
Published Researchers apply quantum computing methods to protein structure prediction



Researchers recently published findings that could lay the groundwork for applying quantum computing methods to protein structure prediction.
Published Theoretical quantum speedup with the quantum approximate optimization algorithm



Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.
Published Modular, scalable hardware architecture for a quantum computer



Researchers demonstrated a scalable, modular hardware platform that integrates thousands of interconnected qubits onto a customized integrated circuit. This 'quantum-system-on-chip' (QSoC) architecture enables them to precisely tune and control a dense array of qubits.
Published Editing without 'cutting': Molecular mechanisms of new gene-editing tool revealed



New research has determined the spatial structure of various processes of a novel gene-editing tool called 'prime editor.' Functional analysis based on these structures also revealed how a 'prime editor' could achieve reverse transcription, synthesizing DNA from RNA, without 'cutting' both strands of the double helix. Clarifying these molecular mechanisms contributes greatly to designing gene-editing tools accurate enough for gene therapy treatments.
Published Researchers create materials with unique combo of stiffness, thermal insulation



Researchers have demonstrated the ability to engineer materials that are both stiff and capable of insulating against heat. This combination of properties is extremely unusual and holds promise for a range of applications, such as the development of new thermal insulation coatings for electronic devices.
Published Solving the problems of proton-conducting perovskites for next-generation fuel cells



As a newly developed perovskite with a large amount of intrinsic oxygen vacancies, BaSc0.8W0.2O2.8 achieves high proton conduction at low and intermediate temperatures, report scientists. By the donor doping of large W6+, this material can take up more water to increase its proton concentration, as well as reduce the proton trapping through electrostatic repulsion between the dopant and proton. These findings could pave the way to the rational design of novel perovskites for protonic ceramic fuel cells (PCFCs) and electrolysis cells (PCECs).
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.
Published Observing mammalian cells with superfast soft X-rays



Researchers have developed a new technique to view living mammalian cells. The team used a powerful laser, called a soft X-ray free electron laser, to emit ultrafast pulses of illumination at the speed of femtoseconds, or quadrillionths of a second. With this they could capture images of carbon-based structures in living cells for the first time, before the soft X-ray radiation damaged them.
Published More than spins: Exploring uncharted territory in quantum devices



Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.
Published Shedding light on the chemical enigma of sulfur trioxide in the atmosphere



Researchers discovered that sulfur trioxide can form products other than sulfuric acid in the atmosphere by interacting with organic and inorganic acids. These previously uncharacterized acid sulfuric anhydride products are almost certainly key contributors to atmospheric new particle formation and a way to efficiently incorporate carboxylic acids into atmospheric nanoparticles. Better prediction of aerosol formation can help curb air pollution and reduce uncertainties concerning climate change.
Published Producing novel liquid crystals by stacking antiaromatic units



In a recent study, researchers developed modified norcorrole molecules whose side chains favored the formation of columnar -stacking structures. Using these compounds, they produced liquid crystals with high electrical conductivity and thermotropic properties. Their findings open up new design avenues for materials useful in electronics, sensing, optics, and biomedicine.
Published Unlocking complex sulfur molecules: Novel approach for synthesis of functionalized benzenethiol equivalents



Organosulfur skeletons are crucial in many fields, including pharmaceuticals and electronics. Synthesizing organosulfur skeletons requires o-bromobenzenethiols. However, conventional methods face challenges due to quick oxidation and formation of highly reactive intermediates. Researchers have now developed a new method for synthesizing o-bromobenzenethiols from aryne intermediates via bromothiolation. This method can pave the way for the synthesis of new organosulfur compounds with applications in diverse fields.
Published Researchers design new metal-free porous framework materials



Researchers have used computational design methods to develop non-metal organic porous framework materials, with potential applications in areas such as catalysis, water capture or hydrogen storage.
Published Scientists develop new battery-free lactic acid sensor



Scientists have created a new type of chemosensor (demonstrated for lactic acid sensing) which functions with electricity but without the need for reference electrodes or battery power.
Published Ethylene from CO2: Building-kit catalyst



Use of the greenhouse gas CO2 as a chemical raw material would not only reduce emissions, but also the consumption of fossil feedstocks. A novel metal-free organic framework could make it possible to electrocatalytically produce ethylene, a primary chemical raw material, from CO2. Nitrogen atoms with a particular electron configuration play a critical role for the catalyst.
Published New crystal production method could enhance quantum computers and electronics



Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.
Published How AI helps programming a quantum computer



Researchers have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to execute a quantum operation. The study marks a significant step forward in unleashing the full extent of quantum computing.
Published By listening, scientists learn how a protein folds



By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.
Published Blueprints of self-assembly



Scientists have taken a step closer to replicating nature's processes of self-assembly. The study describes the synthetic construction of a tiny, self-assembled crystal known as a 'pyrochlore,' which bears unique optical properties. The advance provides a steppingstone to the eventual construction of sophisticated, self-assembling devices at the nanoscale -- roughly the size of a single virus.