Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

From disorder to order: Flocking birds and 'spinning' particles      (via sciencedaily.com)     Original source 

Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Getting dynamic information from static snapshots      (via sciencedaily.com)     Original source 

Researchers have created TopicVelo, a powerful new method of using the static snapshots from scRNA-seq to study how cells and genes change over time. This will help researchers better study how embryos develop, cells differentiate, cancers form, and the immune system reacts.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Robotics Research
Published

A shortcut for drug discovery      (via sciencedaily.com)     Original source 

For most human proteins, there are no small molecules known to bind them chemically (so called 'ligands'). Ligands frequently represent important starting points for drug development but this knowledge gap critically hampers the development of novel medicines. Researchers at CeMM, in a collaboration with Pfizer, have now leveraged and scaled a method to measure the binding activity of hundreds of small molecules against thousands of human proteins. This large-scale study revealed tens of thousands of ligand-protein interactions that can now be explored for the development of chemical tools and therapeutics. Moreover, powered by machine learning and artificial intelligence, it allows unbiased predictions of how small molecules interact with all proteins present in living human cells. These groundbreaking results have been published in the journal Science (DOI: 10.1126/science.adk5864), and all generated data and models are freely available for the scientific community.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Nanomaterial that mimics proteins could be basis for new neurodegenerative disease treatments      (via sciencedaily.com)     Original source 

A newly developed nanomaterial that mimics the behavior of proteins could be an effective tool for treating Alzheimer's and other neurodegenerative diseases. The nanomaterial alters the interaction between two key proteins in brain cells -- with a potentially powerful therapeutic effect.

Chemistry: General Chemistry: Organic Chemistry Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geography
Published

The longer spilled oil lingers in freshwater, the more persistent compounds it produces      (via sciencedaily.com)     Original source 

Oil is an important natural resource for many industries, but it can lead to serious environmental damage when accidentally spilled. While large oil spills are highly publicized, every year there are many smaller-scale spills into lakes, rivers and oceans. The longer that oil remains in freshwater, the more chemical changes it undergoes, creating products that can persist in the environment.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

The secret to saving old books could be gluten-free glues      (via sciencedaily.com)     Original source 

'Bookworm' is a cute thing to call a voracious reader, but actual bookworms -- as well as microorganisms and time -- break down the flour pastes commonly used to keep old publications in one piece. Now, researchers have analyzed the proteins in wheat-based glues applied in historic bookbinding to provide insights on their adhesiveness and how they degrade. This information could help conservators restore and preserve treasured tomes for future generations.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists tune the entanglement structure in an array of qubits      (via sciencedaily.com)     Original source 

A new technique can generate batches of certain entangled states in a quantum processor. This advance could help scientists study the fundamental quantum property of entanglement and enable them to build larger and more complex quantum processors.

Chemistry: Biochemistry Chemistry: Organic Chemistry Physics: Optics
Published

Biophysics: Testing how well biomarkers work      (via sciencedaily.com)     Original source 

Researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry
Published

A chemical mystery solved -- the reaction explaining large carbon sinks      (via sciencedaily.com)     Original source 

A mystery that has puzzled the scientific community for over 50 years has finally been solved. A team has discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Condensed matter physics: Novel one-dimensional superconductor      (via sciencedaily.com)     Original source 

In a significant development in the field of superconductivity, researchers have successfully achieved robust superconductivity in high magnetic fields using a newly created one-dimensional (1D) system. This breakthrough offers a promising pathway to achieving superconductivity in the quantum Hall regime, a longstanding challenge in condensed matter physics.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Lead-vacancy centers in diamond as building blocks for large-scale quantum networks      (via sciencedaily.com)     Original source 

A lead-vacancy (PbV) center in diamond has been developed as a quantum emitter for large-scale quantum networks by researchers. This innovative color center exhibits a sharp zero-phonon-line and emits photons with specific frequencies. The PbV color center stands out among other diamond color centers due to its ability to maintain optical properties at relatively high temperatures of 16 K. This makes it well-suited for transferring quantum information in large-scale quantum networks.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry
Published

Researchers create artificial cells that act like living cells      (via sciencedaily.com)     Original source 

Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.

Computer Science: Quantum Computers Energy: Technology Mathematics: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Manipulating the geometry of 'electron universe' in magnets      (via sciencedaily.com)     Original source 

Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Perfecting the view on a crystal's imperfection      (via sciencedaily.com)     Original source 

Hexagonal boron nitride (hBN) has gained widespread attention and application across various quantum fields and technologies because it contains single-photon emmiters (SPEs), along with a layered structure that is easy to manipulation. The precise mechanisms governing the development and function of SPEs within hBN have remained elusive. Now, a new study reveals significant insights into the properties of hBN, offering a solution to discrepancies in previous research on the proposed origins of SPEs within the material.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

New copper-catalyzed C-H activation strategy      (via sciencedaily.com)     Original source 

Inspired by what human liver enzymes can do, chemists have developed a new set of copper-catalyzed organic synthesis reactions for building and modifying pharmaceuticals and other molecules. The new reactions are expected to be widely used in drug discovery and optimization, as well as in other chemistry-based industries.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Compact quantum light processing      (via sciencedaily.com)     Original source 

An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Light show in living cells      (via sciencedaily.com)     Original source 

Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

From defects to order: Spontaneously emerging crystal arrangements in perovskite halides      (via sciencedaily.com)     Original source 

A new hybrid layered perovskite featuring elusive spontaneous defect ordering has been found, report scientists. By introducing specific concentrations of thiocyanate ions into FAPbI3 (FA = formamidinium), they observed that ordered columnar defects appeared in the stacked crystalline layers, taking up one-third of the lattice space. These findings could pave the way to an innovative strategy for adjusting the properties of hybrid perovskites, leading to practical advances in optoelectronics and energy generation.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Researchers advance pigment chemistry with moon-inspired reddish magentas      (via sciencedaily.com)     Original source 

A researcher who made color history in 2009 with a vivid blue pigment has developed durable, reddish magentas inspired by lunar mineralogy and ancient Egyptian chemistry.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Crucial connection for 'quantum internet' made for the first time      (via sciencedaily.com)     Original source 

Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.