Showing 20 articles starting at article 621
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Energy: Technology
Published The powerhouse of the future: Artificial cells


Researchers identify the most promising advancements and greatest challenges of artificial mitochondria and chloroplasts. The team describes the components required to construct synthetic mitochondria and chloroplasts and identifies proteins as the most important aspects for molecular rotary machinery, proton transport, and ATP production. The authors believe it is important to create artificial cells with biologically realistic energy-generation methods that mimic natural processes; replicating the entire cell could lead to future biomaterials.
Published First silicon integrated ECRAM for a practical AI accelerator


The transformative changes brought by deep learning and artificial intelligence are accompanied by immense costs. For example, OpenAI's ChatGPT algorithm costs at least $100,000 every day to operate. This could be reduced with accelerators, or computer hardware designed to efficiently perform the specific operations of deep learning. However, such a device is only viable if it can be integrated with mainstream silicon-based computing hardware on the material level.
Published Meet the hybrid micro-robot: The tiny robot that is able to navigate in a physiological environment and capture targeted damaged cells


Researchers have developed a hybrid micro-robot, the size of a single biological cell (about 10 microns across), that can be controlled and navigated using two different mechanisms -- electric and magnetic. The micro-robot is able to navigate between different cells in a biological sample, distinguish between different types of cells, identify whether they are healthy or dying, and then transport the desired cell for further study, such as genetic analysis.
Published More predictable renewable energy could lower costs


Lower electricity costs for consumers and more reliable clean energy could be some of the benefits of a new study by researchers who have examined how predictable solar or wind energy generation is and the impact of it on profits in the electricity market.
Published AI 'brain' created from core materials for OLED TVs


A research team develops semiconductor devices for high-performance AI operations by applying IGZO materials widely used in OLED displays.
Published Visualizing spatial distribution of electric properties at microscales with liquid crystal droplets


Existing sensor probes for microelectrical devices can measure only their average electric properties, providing no information on their spatial distribution. Liquid crystal droplets (LCDs) -- microscopic droplets of soft matter that respond to electric field -- are promising in this regard. Accordingly, researchers recently visualized the electric field and electrostatic energy distribution of microstructured electrodes by recording the motion of LCDs under an applied voltage, making for high detection accuracy and spatial resolution.
Published Optical switching at record speeds opens door for ultrafast, light-based electronics and computers


Imagine a home computer operating 1 million times faster than the most expensive hardware on the market. Now, imagine that being the industry standard. Physicists hope to pave the way for that reality.
Published Global experts propose a path forward in generating clean power from waste energy


Scientists have created a comprehensive 'roadmap' to guide global efforts to convert waste energy into clean power.
Published Robot caterpillar demonstrates new approach to locomotion for soft robotics


Researchers have demonstrated a caterpillar-like soft robot that can move forward, backward and dip under narrow spaces. The caterpillar-bot's movement is driven by a novel pattern of silver nanowires that use heat to control the way the robot bends, allowing users to steer the robot in either direction.
Published New invention: The oxygen-ion battery


An oxygen-ion-battery has been invented, based on ceramic materials. If it degrades, it can be regenerated, therefore it potentially has an extremely long lifespan. Also, it does not require any rare elements and it is incombustible. For large energy storage systems, this could be an optimal solution.
Published Cracking the concrete code


New research introduces metamaterial concrete for the development of smart civil infrastructure systems. Researchers present a new concept for lightweight and mechanically-tunable concrete systems that have integrated energy harvesting and sensing functionality.
Published Synthesis gas and battery power from sunlight energy


Plants use photosynthesis to harvest energy from sunlight. Now researchers have applied this principle as the basis for developing new sustainable processes which in the future may produce syngas (synthetic gas) for the large-scale chemical industry and be able to charge batteries.
Published 'Y-ball' compound yields quantum secrets


Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.
Published Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator


Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.
Published High-energy-density, long life-cycle rechargeable lithium metal batteries


Research shows promise for developing high-energy-density rechargeable lithium-metal batteries and addressing the electrochemical oxidation instability of ether-based electrolytes.
Published 'Green' hydrogen: How photoelectrochemical water splitting may become competitive


Sunlight can be used to produce green hydrogen directly from water in photoelectrochemical (PEC) cells. So far, most systems based on this 'direct approach' have not been energetically competitive. However, the balance changes as soon as some of the hydrogen in such PEC cells is used in-situ for a catalytic hydrogenation reaction, resulting in the co-production of chemicals used in the chemical and pharmaceutical industries. The energy payback time of photoelectrochemical 'green' hydrogen production can be reduced dramatically, the study shows.
Published Scientists open door to manipulating 'quantum light'


How light interacts with matter has always fired the imagination. Now scientists for the first time have demonstrated the ability to manipulate single and double atoms exhibiting the properties of simulated light emission. This creates prospects for advances in photonic quantum computing and low-intensity medical imaging.
Published Researchers create breakthrough spintronics manufacturing process that could revolutionize the electronics industry


Researchers have developed a breakthrough process for making spintronic devices that has the potential to create semiconductors chips with unmatched energy efficiency and storage for use in computers, smartphones, and many other electronics.
Published Superconducting amplifiers offer high performance with lower power consumption


Researchers have devised a new concept of superconducting microwave low-noise amplifiers for use in radio wave detectors for radio astronomy observations, and successfully demonstrated a high-performance cooled amplifier with power consumption three orders of magnitude lower than that of conventional cooled semiconductor amplifiers. This result is expected to contribute to the realization of large-scale multi-element radio cameras and error-tolerant quantum computers, both of which require a large number of low-noise microwave amplifiers.
Published Sculpting quantum materials for the electronics of the future


The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials -- whose exceptional properties stem from quantum physics -- is the most promising way to meet these challenges. An international team has designed a material in which the dynamics of electrons can be controlled by curving the fabric of space in which they evolve. These properties are of interest for next-generation electronic devices, including the optoelectronics of the future.