Showing 20 articles starting at article 101
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Space: Structures and Features
Published Webb telescope reveals asteroid collision in neighboring star system



Astronomers have captured what appears to be a snapshot of a massive collision of giant asteroids in Beta Pictoris, a neighboring star system known for its early age and tumultuous planet-forming activity.
Published The solar system may have passed through dense interstellar clouds 2 million years ago, altering Earth's climate



Astrophysicists calculate the likelihood that Earth was exposed to cold, harsh interstellar clouds, a phenomenon not previously considered in geologic climate models.
Published Galactic bloodlines: Many nearby star clusters originate from only three 'families'



Astronomers have deciphered the formation history of young star clusters, some of which we can see with the naked eye at night. The team reports that most nearby young star clusters belong to only three families, which originate from very massive star-forming regions. This research also provides new insights into the effects of supernovae (violent explosions at the end of the life of very massive stars) on the formation of giant gas structures in galaxies like our Milky Way.
Published Small, cool and sulfurous exoplanet may help write recipe for planetary formation



Astronomers observing exoplanet GJ 3470 b saw evidence of water, carbon dioxide, methane and sulfur dioxide. Astronomers hope the discovery of this exoplanet's sulfurous atmosphere will advance our understanding of how planets forms.
Published Researchers upend theory about the formation of the Milky Way Galaxy



Research reveals a shocking discovery about the history of our universe: the Milky Way Galaxy's last major collision occurred billions of years later than previously thought.
Published Exotic black holes could be a byproduct of dark matter



In the first quintillionth of a second, the universe may have sprouted microscopic black holes with enormous amounts of nuclear charge, MIT physicists propose. The gravitational pull from these tiny, invisible objects could potentially explain all the dark matter that we can't see today.
Published Planet-forming disks around very low-mass stars are different



Using the James Webb Space Telescope, a team of astronomers studied the properties of a planet-forming disk around a young and very low-mass star. The results reveal the richest hydrocarbon composition seen to date in a protoplanetary disk, including the first extrasolar detection of ethane and a relatively low abundance of oxygen-bearing species. By including previous similar detections, this finding confirms a trend of disks around very low-mass stars to be chemically distinct from those around more massive stars like the Sun, influencing the atmospheres of planets forming there.
Published Scientists detect slowest-spinning radio emitting neutron star ever recorded



Scientists have detected what they believe to be a neutron star spinning at an unprecedentedly slow rate -- slower than any of the more than 3,000 radio emitting neutron stars measured to date.
Published 'Weird' new planet retained atmosphere despite nearby star's relentless radiation



A rare exoplanet that should have been stripped down to bare rock by its nearby host star's intense radiation somehow grew a puffy atmosphere instead -- the latest in a string of discoveries forcing scientists to rethink theories about how planets age and die in extreme environments. Nicknamed 'Phoenix' for its ability to survive its red giant star's radiant energy discovered planet illustrates the vast diversity of solar systems and the complexity of planetary evolution -- especially at the end of stars' lives.
Published Groundbreaking progress in quantum physics: How quantum field theories decay and fission



An international research team has sparked interest in the scientific community with results in quantum physics. In their current study, the researchers reinterpret the Higgs mechanism, which gives elementary particles mass and triggers phase transitions, using the concept of 'magnetic quivers.'
Published The coldest lab in New York has new quantum offering



Physicists describe the successful creation of a molecular Bose-Einstein condensate (BEC). Made up of dipolar sodium-cesium molecules that were cooled with the help of microwave shielding to just 5 nanoKelvin and lasted for up to two seconds, the new molecular BEC will help scientists explore a number of different quantum phenomena, including new types of superfluidity, and enable the creation of quantum simulators to ecreate the enigmatic properties of complex materials, like solid crystals.
Published Medium and mighty: Intermediate-mass black holes can survive in globular clusters



New research demonstrated a possible formation mechanism of intermediate-mass black holes in globular clusters, star clusters that could contain tens of thousands or even millions of tightly packed stars. The first ever star-by-star massive cluster-formation simulations revealed that sufficiently dense molecular clouds, the 'birthing nests' of star clusters, can give birth to very massive stars that evolve into intermediate-mass black holes.
Published NASA's James Webb Space Telescope finds most distant known galaxy



Over the last two years, scientists have used NASA's James Webb Space Telescope to explore what astronomers refer to as Cosmic Dawn -- the period in the first few hundred million years after the big bang where the first galaxies were born.
Published The thinnest lens on Earth, enabled by excitons



Lenses are used to bend and focus light. Normal lenses rely on their curved shape to achieve this effect, but physicists have made a flat lens of only three atoms thick which relies on quantum effects. This type of lens could be used in future augmented reality glasses.
Published Researchers apply quantum computing methods to protein structure prediction



Researchers recently published findings that could lay the groundwork for applying quantum computing methods to protein structure prediction.
Published Theoretical quantum speedup with the quantum approximate optimization algorithm



Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.
Published Modular, scalable hardware architecture for a quantum computer



Researchers demonstrated a scalable, modular hardware platform that integrates thousands of interconnected qubits onto a customized integrated circuit. This 'quantum-system-on-chip' (QSoC) architecture enables them to precisely tune and control a dense array of qubits.
Published The case of the missing black holes



Researchers have applied the well-understood and highly verified quantum field theory, usually applied to the study of the very small, to a new target, the early universe. Their exploration led to the conclusion that there ought to be far fewer miniature black holes than most models suggest, though observations to confirm this should soon be possible. The specific kind of black hole in question could be a contender for dark matter.
Published More than spins: Exploring uncharted territory in quantum devices



Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.
Published Birth of universe's earliest galaxies observed for first time



Researchers have now seen the formation of three of the earliest galaxies in the universe, more than 13 billion years ago. The sensational discovery contributes important knowledge about the universe.