Showing 20 articles starting at article 301
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Physics: Acoustics and Ultrasound
Published Breakthrough in the understanding of quantum turbulence


Researchers have shown how energy disappears in quantum turbulence, paving the way for a better understanding of turbulence in scales ranging from the microscopic to the planetary. The team's findings demonstrate a new understanding of how wave-like motion transfers energy from macroscopic to microscopic length scales, and their results confirm a theoretical prediction about how the energy is dissipated at small scales. In the future, an improved understanding of turbulence beginning on the quantum level could allow for improved engineering in domains where the flow and behavior of fluids and gases like water and air is a key question. Understanding that in classical fluids will help scientists do things like improve the aerodynamics of vehicles, predict the weather with better accuracy, or control water flow in pipes. There is a huge number of potential real-world uses for understanding macroscopic turbulence.
Published Propeller advance paves way for quiet, efficient electric aviation


Electrification is seen as having an important role to play in the fossil-free aviation of tomorrow. But electric aviation is battling a trade-off dilemma: the more energy-efficient an electric aircraft is, the noisier it gets. Now, researchers have developed a propeller design optimization method that paves the way for quiet, efficient electric aviation.
Published Cleaning up the atmosphere with quantum computing


Practical carbon capture technologies are still in the early stages of development, with the most promising involving a class of compounds called amines that can chemically bind with carbon dioxide. Researchers now deploy an algorithm to study amine reactions through quantum computing. An existing quantum computer cab run the algorithm to find useful amine compounds for carbon capture more quickly, analyzing larger molecules and more complex reactions than a traditional computer can.
Published Understanding sound direction estimation in monaural hearing


One of the fascinating features of human hearing is its ability to localize sound. While the human ear usually does this with binaural cues, it is, in fact, possible to locate sound direction with monaural hearing alone. Now, researchers have developed a method to estimate the direction of sound signals in 3D space using monaural cues based on monaural modulation spectrum that could help simplify sound surveillance techniques and enhance hearing aid instruments.
Published Magnetism fosters unusual electronic order in quantum material


Physicists have published an array of experimental evidence showing that the ordered magnetic arrangement of electrons in crystals of iron-germanium plays an integral role in bringing about an ordered electronic arrangement called a charge density wave that the team discovered in the material last year.
Published New ultrasound method could lead to easier disease diagnosis


A new ultrasound method that can measure the level of tension in human tissue -- a key indicator of disease -- has been developed.
Published In the world's smallest ball game, scientists throw and catch single atoms using light


Researchers show that individual atoms can be caught and thrown using light. This is the first time an atom has been released from a trap -- or thrown -- and then caught by another trap. This technology could be used in quantum computing applications.
Published Researchers take a step towards turning interactions that normally ruin quantum information into a way of protecting it


A new method for predicting the behavior of quantum devices provides a crucial tool for real-world applications of quantum technology.
Published Two-dimensional quantum freeze


Researchers have succeeded in simultaneously cooling the motion of a tiny glass sphere in two dimensions to the quantum ground-state. This represents a crucial step towards a 3D ground-state cooling of a massive object and opens up new opportunities for the design of ultra-sensitive sensors.
Published An innovative twist on quantum bits: Tubular nanomaterial of carbon makes ideal home for spinning quantum bits


Scientists develop method for chemically modifying nanoscale tubes of carbon atoms, so they can host spinning electrons to serve as stable quantum bits in quantum technologies.
Published The future of touch


Haptic holography promises to bring virtual reality to life, but a new study reveals a surprising physical obstacle that will need to be overcome.
Published Quantum chemistry: Molecules caught tunneling


Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.
Published Ultrasound device may offer new treatment option for hypertension


A new device that calms overactive kidney nerves with ultrasound consistently lowered blood pressure in patients with uncontrolled hypertension, researchers have found.
Published New material may offer key to solving quantum computing issue


A new form of heterostructure of layered two-dimensional (2D) materials may enable quantum computing to overcome key barriers to its widespread application, according to an international team of researchers.
Published Faster and sharper whole-body imaging of small animals with deep learning


A research team presents technology that enhances photoacoustic computed tomography using a deep-learning approach.
Published Breakthrough in tin-vacancy centers for quantum network applications


Tin-vacancy (Sn-V) centers in diamond have the potential to function as quantum nodes in quantum networks to transmit information. However, they pose limitations while showing optical properties to generate quantum entanglement. Researchers have now overcome this challenge by generating stable Sn-V centers that can produce photons with nearly identical frequencies and linewidths, paving the way for the advancement of Sn-V centers as a quantum-light matter interface.
Published Making engineered cells dance to ultrasound


A team has developed a method for selectively manipulating genetically engineered cells with ultrasound.
Published Let there be (controlled) light


In the very near future, quantum computers are expected to revolutionize the way we compute, with new approaches to database searches, AI systems, simulations and more. But to achieve such novel quantum technology applications, photonic integrated circuits which can effectively control photonic quantum states -- the so-called qubits -- are needed. Physicists have made a breakthrough in this effort: for the first time, they demonstrated the controlled creation of single-photon emitters in silicon at the nanoscale.
Published Theory can sort order from chaos in complex quantum systems


Theoretical chemists have developed a theory that can predict the threshold at which quantum dynamics switches from 'orderly' to 'random,' as shown through research using large-scale computations on photosynthesis models.
Published The quantum twisting microscope: A new lens on quantum materials


One of the striking aspects of the quantum world is that a particle, say, an electron, is also a wave, meaning that it exists in many places at the same time. Researchers make use of this property to develop a new type of tool -- the quantum twisting microscope (QTM) -- that can create novel quantum materials while simultaneously gazing into the most fundamental quantum nature of their electrons.