Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Theoretical quantum speedup with the quantum approximate optimization algorithm      (via sciencedaily.com)     Original source 

Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.

Computer Science: General Computer Science: Quantum Computers
Published

Modular, scalable hardware architecture for a quantum computer      (via sciencedaily.com)     Original source 

Researchers demonstrated a scalable, modular hardware platform that integrates thousands of interconnected qubits onto a customized integrated circuit. This 'quantum-system-on-chip' (QSoC) architecture enables them to precisely tune and control a dense array of qubits.

Environmental: General Geoscience: Environmental Issues Geoscience: Geology Geoscience: Volcanoes
Published

Earth scientists describe a new kind of volcanic eruption      (via sciencedaily.com)     Original source 

By analyzing the dynamics of 12 back-to-back explosions that happened in 2018, researchers describe a new type of volcanic eruption mechanism. The explosions were driven by sudden pressure increases as the ground collapsed, which blasted plumes of rock fragments and hot gas into the air, much like a classic stomp-rocket toy.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

More than spins: Exploring uncharted territory in quantum devices      (via sciencedaily.com)     Original source 

Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New crystal production method could enhance quantum computers and electronics      (via sciencedaily.com)     Original source 

Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.

Computer Science: General Computer Science: Quantum Computers Mathematics: Modeling
Published

How AI helps programming a quantum computer      (via sciencedaily.com)     Original source 

Researchers have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to execute a quantum operation. The study marks a significant step forward in unleashing the full extent of quantum computing.

Geoscience: Earth Science Geoscience: Earthquakes Geoscience: Volcanoes
Published

Highly sensitive fiber optic gyroscope senses rotational ground motion around active volcano      (via sciencedaily.com)     Original source 

Researchers have built a prototype fiber optic gyroscope for high resolution, real-time monitoring of ground rotations caused by earthquakes in the active volcanic area of Campi Flegrei in Naples, Italy. A better understanding of the seismic activity in this highly populated area could improve risk assessment and might lead to improved early warning systems.

Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

2D materials: A catalyst for future quantum technologies      (via sciencedaily.com)     Original source 

Researchers have discovered that a 'single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature. This underscores the broader potential of 2D materials in advancing quantum technologies.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General
Published

World's smallest quantum light detector on a silicon chip      (via sciencedaily.com)     Original source 

Researchers have made an important breakthrough in scaling quantum technology by integrating the world's tiniest quantum light detector onto a silicon chip.

Computer Science: Quantum Computers Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

Wavefunction matching for solving quantum many-body problems      (via sciencedaily.com)     Original source 

Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur. This problem has now been solved using the new method of wavefunction matching.

Computer Science: General Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A simple quantum internet with significant possibilities      (via sciencedaily.com)     Original source 

It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists create an 'optical conveyor belt' for quasiparticles      (via sciencedaily.com)     Original source 

Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Speedy, secure, sustainable -- that's the future of telecom      (via sciencedaily.com)     Original source 

A new device that can process information using a small amount of light could enable energy-efficient and secure communications.

Geoscience: Earth Science Geoscience: Geochemistry Geoscience: Geology Geoscience: Volcanoes
Published

Clues from deep magma reservoirs could improve volcanic eruption forecasts      (via sciencedaily.com)     Original source 

New research into molten rock 20km below the Earth's surface could help save lives by improving the prediction of volcanic activity.

Computer Science: General Computer Science: Quantum Computers
Published

New super-pure silicon chip opens path to powerful quantum computers      (via sciencedaily.com)     Original source 

Researchers have invented a breakthrough technique for manufacturing highly purified silicon that brings powerful quantum computers a big step closer.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Experiment opens door for millions of qubits on one chip      (via sciencedaily.com)     Original source 

Researchers have achieved the first controllable interaction between two hole spin qubits in a conventional silicon transistor. The breakthrough opens up the possibility of integrating millions of these qubits on a single chip using mature manufacturing processes.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques      (via sciencedaily.com)     Original source 

Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.

Chemistry: Biochemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Physicists arrange atoms in extremely close proximity      (via sciencedaily.com)     Original source 

Physicists developed a technique to arrange atoms in much closer proximity than previously possible, down to 50 nanometers. The group plans to use the method to manipulate atoms into configurations that could generate the first purely magnetic quantum gate -- a key building block for a new type of quantum computer.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists test for quantum nature of gravity      (via sciencedaily.com)     Original source 

A new study reports on a deep new probe into the interface between the theories of gravity and quantum mechanics, using ultra-high energy neutrino particles detected by a particle detector set deep into the Antarctic glacier at the south pole.