Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Geoscience: Volcanoes
Published Researchers apply quantum computing methods to protein structure prediction



Researchers recently published findings that could lay the groundwork for applying quantum computing methods to protein structure prediction.
Published Theoretical quantum speedup with the quantum approximate optimization algorithm



Researchers demonstrated a quantum algorithmic speedup with the quantum approximate optimization algorithm, laying the groundwork for advancements in telecommunications, financial modeling, materials science and more.
Published Modular, scalable hardware architecture for a quantum computer



Researchers demonstrated a scalable, modular hardware platform that integrates thousands of interconnected qubits onto a customized integrated circuit. This 'quantum-system-on-chip' (QSoC) architecture enables them to precisely tune and control a dense array of qubits.
Published Earth scientists describe a new kind of volcanic eruption



By analyzing the dynamics of 12 back-to-back explosions that happened in 2018, researchers describe a new type of volcanic eruption mechanism. The explosions were driven by sudden pressure increases as the ground collapsed, which blasted plumes of rock fragments and hot gas into the air, much like a classic stomp-rocket toy.
Published More than spins: Exploring uncharted territory in quantum devices



Many of today's quantum devices rely on collections of qubits, also called spins. These quantum bits have only two energy levels, the '0' and the '1'. However, spins in real devices also interact with light and vibrations known as bosons, greatly complicating calculations. Researchers now demonstrate a way to describe spin-boson systems and use this to efficiently configure quantum devices in a desired state.
Published New crystal production method could enhance quantum computers and electronics



Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.
Published How AI helps programming a quantum computer



Researchers have unveiled a novel method to prepare quantum operations on a given quantum computer, using a machine learning generative model to find the appropriate sequence of quantum gates to execute a quantum operation. The study marks a significant step forward in unleashing the full extent of quantum computing.
Published Highly sensitive fiber optic gyroscope senses rotational ground motion around active volcano



Researchers have built a prototype fiber optic gyroscope for high resolution, real-time monitoring of ground rotations caused by earthquakes in the active volcanic area of Campi Flegrei in Naples, Italy. A better understanding of the seismic activity in this highly populated area could improve risk assessment and might lead to improved early warning systems.
Published 2D materials: A catalyst for future quantum technologies



Researchers have discovered that a 'single atomic defect' in a layered 2D material can hold onto quantum information for microseconds at room temperature. This underscores the broader potential of 2D materials in advancing quantum technologies.
Published World's smallest quantum light detector on a silicon chip



Researchers have made an important breakthrough in scaling quantum technology by integrating the world's tiniest quantum light detector onto a silicon chip.
Published Wavefunction matching for solving quantum many-body problems



Strongly interacting systems play an important role in quantum physics and quantum chemistry. Stochastic methods such as Monte Carlo simulations are a proven method for investigating such systems. However, these methods reach their limits when so-called sign oscillations occur. This problem has now been solved using the new method of wavefunction matching.
Published A simple quantum internet with significant possibilities



It's one thing to dream up a quantum internet that could send hacker-proof information around the world via photons superimposed in different quantum states. It's quite another to physically show it's possible. That's exactly what physicists have done, using existing Boston-area telecommunication fiber, in a demonstration of the world's longest fiber distance between two quantum memory nodes to date.
Published Scientists create an 'optical conveyor belt' for quasiparticles



Using interference between two lasers, a research group has created an 'optical conveyor belt' that can move polaritons -- a type of light-matter hybrid particle -- in semiconductor-based microcavities. This work could lead to the development of new devices with applications in areas such as quantum metrology and quantum information.
Published Speedy, secure, sustainable -- that's the future of telecom



A new device that can process information using a small amount of light could enable energy-efficient and secure communications.
Published Clues from deep magma reservoirs could improve volcanic eruption forecasts



New research into molten rock 20km below the Earth's surface could help save lives by improving the prediction of volcanic activity.
Published New super-pure silicon chip opens path to powerful quantum computers



Researchers have invented a breakthrough technique for manufacturing highly purified silicon that brings powerful quantum computers a big step closer.
Published Experiment opens door for millions of qubits on one chip



Researchers have achieved the first controllable interaction between two hole spin qubits in a conventional silicon transistor. The breakthrough opens up the possibility of integrating millions of these qubits on a single chip using mature manufacturing processes.
Published New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques



Researchers have unveiled a quantum sensing scheme that achieves the pinnacle of quantum sensitivity in measuring the transverse displacement between two interfering photons.
Published Physicists arrange atoms in extremely close proximity



Physicists developed a technique to arrange atoms in much closer proximity than previously possible, down to 50 nanometers. The group plans to use the method to manipulate atoms into configurations that could generate the first purely magnetic quantum gate -- a key building block for a new type of quantum computer.
Published Scientists test for quantum nature of gravity



A new study reports on a deep new probe into the interface between the theories of gravity and quantum mechanics, using ultra-high energy neutrino particles detected by a particle detector set deep into the Antarctic glacier at the south pole.