Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Archaeology: General, Computer Science: Quantum Computers
Published Quantum talk with magnetic disks



Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.
Published Study reveals 'cozy domesticity' of prehistoric stilt-house dwellers in England's ancient marshland



Detailed reports on thousands of artifacts pulled from 'Britain's Pompeii' reveals the surprisingly sophisticated domestic lives of Bronze Age Fen folk some 3,000 years ago -- from home interiors to recipes, clothing, kitchenware and pets.
Published New archive of ancient human brains challenges misconceptions of soft tissue preservation



A new study has challenged previously held views that brain preservation in the archaeological record is extremely rare. The team compiled a new archive of preserved human brains, which highlighted that nervous tissues actually persist in much greater abundances than traditionally thought, assisted by conditions that prevent decay.
Published Where quantum computers can score



The traveling salesman problem is considered a prime example of a combinatorial optimization problem. Now a team has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.
Published Staying in the loop: How superconductors are helping computers 'remember'



To advance neuromorphic computing, some researchers are looking at analog improvements -- advancing not just software, but hardware too. Research shows a promising new way to store and transmit information using disordered superconducting loops.
Published Satellites for quantum communications



Through steady advances in the development of quantum computers and their ever-improving performance, it will be possible in the future to crack our current encryption processes. To address this challenge, researchers are developing encryption methods that will apply physical laws to prevent the interception of messages. To safeguard communications over long distances, the QUICK space mission will deploy satellites.
Published Powerful new tool ushers in new era of quantum materials research



Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.
Published Design rules and synthesis of quantum memory candidates



In the quest to develop quantum computers and networks, there are many components that are fundamentally different than those used today. Like a modern computer, each of these components has different constraints. However, it is currently unclear what materials can be used to construct those components for the transmission and storage of quantum information.
Published Lost tombs and quarries rediscovered on British military base in Cyprus



Archaeologists rediscovers 46 sites at the Eastern Sovereign Base Area at Dhekelia, Cyprus. Archaeologists located sites from archive records, a number of which were thought to have been 'lost.' They uncovered evidence of quarries and tombs likely to span from the Bronze Age, Byzantine, Hellenistic and Roman periods.
Published Making quantum bits fly



Physicists are developing a method that could enable the stable exchange of information in quantum computers. In the leading role: photons that make quantum bits 'fly'.
Published Shortcut to Success: Toward fast and robust quantum control through accelerating adiabatic passage



Researchers achieved the acceleration of adiabatic evolution of a single spin qubit in gate-defined quantum dots. After the pulse optimization to suppress quasistatic noises, the spin flip fidelity can be as high as 97.5% in GaAs quantum dots. This work may be useful to achieve fast and high-fidelity quantum computing.
Published Network of quantum sensors boosts precision



Quantum sensor technology promises even more precise measurements of physical quantities. A team has now compared the signals of up to 91 quantum sensors with each other and thus successfully eliminated the noise caused by interactions with the environment. Correlation spectroscopy can be used to increase the precision of sensor networks.
Published AI-enabled atomic robotic probe to advance quantum material manufacturing



Scientists have pioneered a new methodology of fabricating carbon-based quantum materials at the atomic scale by integrating scanning probe microscopy techniques and deep neural networks. This breakthrough highlights the potential of implementing artificial intelligence at the sub-angstrom scale for enhanced control over atomic manufacturing, benefiting both fundamental research and future applications.
Published Scientists make nanoparticles dance to unravel quantum limits



The question of where the boundary between classical and quantum physics lies is one of the longest-standing pursuits of modern scientific research and in new research, scientists demonstrate a novel platform that could help us find an answer.
Published Umbrella for atoms: The first protective layer for 2D quantum materials



As silicon-based computer chips approach their physical limitations in the quest for faster and smaller designs, the search for alternative materials that remain functional at atomic scales is one of science's biggest challenges. In a groundbreaking development, researchers have engineered a protective film that shields quantum semiconductor layers just one atom thick from environmental influences without compromising their revolutionary quantum properties. This puts the application of these delicate atomic layers in ultrathin electronic components within realistic reach.
Published Scientists ID burned bodies using technique used for extracting DNA from woolly mammoths, Neanderthals



A technique originally devised to extract DNA from woolly mammoths and other ancient archaeological specimens can be used to potentially identify badly burned human remains, according to research.
Published Slimming down a colossal fossil whale



A 30 million year-old fossil whale may not be the heaviest animal of all time after all, according to a new analysis by paleontologists. The new analysis puts Perucetus colossus back in the same weight range as modern whales and smaller than the largest blue whales ever recorded.
Published Climate change threatens thousands of archaeological sites in coastal Georgia



Thousands of historic and archaeological sites in Georgia are at risk from tropical storm surges, and that number will increase with climate change, according to a new study.
Published Experiment captures why pottery forms are culturally distinct



Potters of different cultural backgrounds learn new types differently, producing cultural differences even in the absence of differential cultural evolution. The research has implications for how we evaluate the difference of archaeological artifacts across cultures.
Published Resurrecting niobium for quantum science



Niobium has long been considered an underperformer in superconducting qubits. Scientists have now engineered a high-quality niobium-based qubit, taking advantage of niobium's superior qualities.