Computer Science: Quantum Computers
Published

Examining the superconducting diode effect      (via sciencedaily.com)     Original source 

Scientists have reviewed the superconducting diode effect, a quantum effect enabling dissipationless supercurrent to flow in only one direction. The SDE provides new functionalities for superconducting circuits and future ultra-low energy superconducting/hybrid devices, with potential for quantum technologies in both classical and quantum computing.

Computer Science: General Computer Science: Quantum Computers
Published

New qubit circuit enables quantum operations with higher accuracy      (via sciencedaily.com) 

Researchers have developed a novel superconducting qubit architecture that can perform operations between qubits with much higher accuracy than scientists have yet been able to achieve. This architecture, which utilizes a relatively new type of superconducting qubit called fluxonium, is scalable and could be used to someday build a large-scale quantum computer.

Anthropology: Early Humans Anthropology: General Biology: Biochemistry Biology: Evolutionary Biology: Microbiology Biology: Zoology Ecology: Extinction Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle      (via sciencedaily.com)     Original source 

A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.

Biology: Botany Biology: Evolutionary Ecology: Endangered Species Ecology: Extinction Ecology: Nature Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Nature's great survivors: Flowering plants survived the mass extinction that killed the dinosaurs      (via sciencedaily.com)     Original source 

A new study by researchers from the University of Bath (UK) and Universidad Nacional Autónoma de México (Mexico) shows that flowering plants escaped relatively unscathed from the mass extinction that killed the dinosaurs 66 million years ago. Whilst they suffered some species loss, the devastating event helped flowering plants become the dominant type of plant today.

Computer Science: Quantum Computers
Published

A linear path to efficient quantum technologies      (via sciencedaily.com)     Original source 

Researchers have demonstrated that a key ingredient for many quantum computation and communication schemes can be performed with an efficiency that exceeds the commonly assumed upper theoretical limit -- thereby opening up new perspectives for a wide range of photonic quantum technologies.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers make a significant step towards reliably processing quantum information      (via sciencedaily.com) 

Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning contributes to better quantum error correction      (via sciencedaily.com) 

Researchers have used machine learning to perform error correction for quantum computers -- a crucial step for making these devices practical -- using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.

Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Atomically-precise quantum antidots via vacancy self-assembly      (via sciencedaily.com) 

Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Deriving the fundamental limit of heat current in quantum mechanical many-particle systems      (via sciencedaily.com) 

Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.

Chemistry: Inorganic Chemistry Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Energy: Technology Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Better cybersecurity with new material      (via sciencedaily.com) 

Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A simpler way to connect quantum computers      (via sciencedaily.com) 

Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.

Ecology: Extinction Paleontology: Dinosaurs Paleontology: Fossils Paleontology: General
Published

Europe's very own dinosaurs -- the enigmatic Late Cretaceous rhabdodontids      (via sciencedaily.com)     Original source 

A new study brings together intriguing details about the little-known Rhabdodontidae dinosaurs of Late Cretaceous Europe. These gregarious herbivores, characterized by robust builds and beaks specialized for tough vegetation, inhabited the European archipelago. Despite being widespread and abundant, they vanished in Western Europe due to environmental changes around 69 million years ago, while surviving longer in Eastern Europe. Their fossil record offers valuable insights into their evolution and lifestyle, although its limited nature still challenges comprehensive understanding.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Paving the way for advanced quantum sensors      (via sciencedaily.com) 

Quantum physics has allowed for the creation of sensors far surpassing the precision of classical devices. Now, several new studies show that the precision of these quantum sensors can be significantly improved using entanglement produced by finite-range interactions. Researchers were able to demonstrate this enhancement using entangled ion-chains with up to 51 particles.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hotter quantum systems can cool faster than initially colder equivalents      (via sciencedaily.com) 

The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum computer unveils atomic dynamics of light-sensitive molecules      (via sciencedaily.com) 

Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum device generates single photons and encodes information      (via sciencedaily.com) 

A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.