Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Offbeat: Space
Published Signs of life would be detectable in single ice grain emitted from extraterrestrial moons



Could life be found in frozen sea spray from moons orbiting Saturn or Jupiter? New research finds that life can be detected in a single ice grain containing one bacterial cell or portions of a cell. The results suggest that if life similar to that on Earth exists on these planetary bodies, that this life should be detectable by instruments launching in the fall.
Published Secrets of the Van Allen belt revealed in new study



A challenge to space scientists to better understand our hazardous near-Earth space environment has been set in a new study.
Published Verifying the work of quantum computers



Researchers have invented a new method by which classical computers can measure the error rates of quantum machines without having to fully simulate them.
Published Icy impacts: Planetary scientists use physics and images of impact craters to gauge the thickness of ice on Europa



New study reveals that Europa's ice shell is at least 20 kilometers thick.
Published Quantum talk with magnetic disks



Quantum computers promise to tackle some of the most challenging problems facing humanity today. While much attention has been directed towards the computation of quantum information, the transduction of information within quantum networks is equally crucial in materializing the potential of this new technology. Addressing this need, a research team is now introducing a new approach for transducing quantum information: the team has manipulated quantum bits, so called qubits, by harnessing the magnetic field of magnons -- wave-like excitations in a magnetic material -- that occur within microscopic magnetic disks.
Published Scientists find one of the most ancient stars that formed in another galaxy



The first generation of stars transformed the universe. Inside their cores, simple hydrogen and helium fused into a rainbow of elements. When these stars died, they exploded and sent these new elements across the universe. The iron running in your veins and the calcium in your teeth and the sodium powering your thoughts were all born in the heart of a long-dead star.
Published Quantum tornado provides gateway to understanding black holes



Scientists have created a giant quantum vortex to mimic a black hole in superfluid helium that has allowed them to see in greater detail how analogue black holes behave and interact with their surroundings.
Published Astrophysicist's research could provide a hint in the search for dark matter



Dark matter is one of science's greatest mysteries. Although it is believed to make up about 85 percent of the cosmos, scientists know very little about its fundamental nature. Research provides some of the most stringent constraints on the nature of dark matter yet. It also revealed a small hint of a signal that, if real, could be confirmed in the next decade or so.
Published Where quantum computers can score



The traveling salesman problem is considered a prime example of a combinatorial optimization problem. Now a team has shown that a certain class of such problems can actually be solved better and much faster with quantum computers than with conventional methods.
Published New research suggests that our universe has no dark matter



A new study challenges the current model of the universe by showing that, in fact, it has no room for dark matter.
Published Protein fragments ID two new 'extremophile' microbes--and may help find alien life



Perfectly adapted microorganisms live in extreme environments from deep-sea trenches to mountaintops. Learning more about how these extremophiles survive in hostile conditions could inform scientists about life on Earth and potential life on other planets.
Published Staying in the loop: How superconductors are helping computers 'remember'



To advance neuromorphic computing, some researchers are looking at analog improvements -- advancing not just software, but hardware too. Research shows a promising new way to store and transmit information using disordered superconducting loops.
Published Satellites for quantum communications



Through steady advances in the development of quantum computers and their ever-improving performance, it will be possible in the future to crack our current encryption processes. To address this challenge, researchers are developing encryption methods that will apply physical laws to prevent the interception of messages. To safeguard communications over long distances, the QUICK space mission will deploy satellites.
Published Scientists propose new theory that explains sand ripples on Mars and on Earth



Sand ripples are symmetrical. Yet wind -- which causes them -- is very much not. Furthermore, sand ripples can be found on Mars and on Earth. They would be even more fascinating if the same effect found on Mars could be found here on Earth as well. What if one unified theory could explain their formation on both planets?
Published Powerful new tool ushers in new era of quantum materials research



Research in quantum materials is paving the way for groundbreaking discoveries and is poised to drive technological advancements that will redefine the landscapes of industries like mining, energy, transportation, and medtech. A technique called time- and angle-resolved photoemission spectroscopy (TR-ARPES) has emerged as a powerful tool, allowing researchers to explore the equilibrium and dynamical properties of quantum materials via light-matter interaction.
Published Peering into the tendrils of NGC 604 with NASA's Webb



The formation of stars and the chaotic environments they inhabit is one of the most well-studied, but also mystery-shrouded, areas of cosmic investigation. The intricacies of these processes are now being unveiled like never before by NASA's James Webb Space Telescope.
Published Design rules and synthesis of quantum memory candidates



In the quest to develop quantum computers and networks, there are many components that are fundamentally different than those used today. Like a modern computer, each of these components has different constraints. However, it is currently unclear what materials can be used to construct those components for the transmission and storage of quantum information.
Published Nasa’s Webb, Hubble telescopes affirm universe’s expansion rate, puzzle persists



When you are trying to solve one of the biggest conundrums in cosmology, you should triple check your homework. The puzzle, called the 'Hubble Tension,' is that the current rate of the expansion of the universe is faster than what astronomers expect it to be, based on the universe's initial conditions and our present understanding of the universe's evolution.
Published CSI in space: Analyzing bloodstain patterns in microgravity



As more people seek to go where no man has gone before, researchers are exploring how forensic science can be adapted to extraterrestrial environments. A new study highlights the behavior of blood in microgravity and the unique challenges of bloodstain pattern analysis aboard spacecraft.
Published Interstellar signal linked to aliens was actually just a truck



Sound waves thought to be from a 2014 meteor fireball north of Papua New Guinea were almost certainly vibrations from a truck rumbling along a nearby road, new research shows. The findings raise doubts that materials pulled last year from the ocean are alien materials from that meteor, as was widely reported.