Chemistry: Biochemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Atomically-precise quantum antidots via vacancy self-assembly      (via sciencedaily.com) 

Scientists demonstrated a conceptual breakthrough by fabricating atomically precise quantum antidots using self-assembled single vacancies in a two-dimensional transition metal dichalcogenide.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Deriving the fundamental limit of heat current in quantum mechanical many-particle systems      (via sciencedaily.com) 

Researchers have mathematically derived the fundamental limit of heat current flowing into a quantum system comprising numerous quantum mechanical particles in relation to the particle count. Further, they established a clearer understanding of how the heat current rises with increasing particle count, shedding light on the performance constraints of potential future quantum thermal devices.

Offbeat: General Offbeat: Plants and Animals
Published

Will it slip or will it grip: scientists ask, 'what is snail mucus?'      (via sciencedaily.com)     Original source 

Scientists profile the mucus of Cornu aspersum -- a snail species used in beauty product formulation and eaten as escargot -- and detail the composition of three unique types of secretions -- one that hydrates and protects its skin, another that works as a glue-like adhesive, and another that lubricates to allow the animal to move freely across surfaces.

Chemistry: Inorganic Chemistry Computer Science: Encryption Computer Science: General Computer Science: Quantum Computers Energy: Technology Mathematics: Puzzles Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Better cybersecurity with new material      (via sciencedaily.com) 

Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A simpler way to connect quantum computers      (via sciencedaily.com) 

Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.

Computer Science: Quantum Computers Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Paving the way for advanced quantum sensors      (via sciencedaily.com) 

Quantum physics has allowed for the creation of sensors far surpassing the precision of classical devices. Now, several new studies show that the precision of these quantum sensors can be significantly improved using entanglement produced by finite-range interactions. Researchers were able to demonstrate this enhancement using entangled ion-chains with up to 51 particles.

Biology: Zoology Ecology: Animals Offbeat: Plants and Animals
Published

Bat study reveals how the brain is wired for collective behavior      (via sciencedaily.com)     Original source 

Researchers used wireless neural recording and imaging devices to 'listen in' on the hippocampal brain activity of groups of Egyptian fruit bats as they flew freely within a large flight room. The researchers were surprised to find that, in this social setting, the bat's 'place' neurons encoded not only the animal's location, but also information about the presence or absence of other bats, and even the identity of bats in their path.

Chemistry: Thermodynamics Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Hotter quantum systems can cool faster than initially colder equivalents      (via sciencedaily.com) 

The Mpemba effect is originally referred to the non-monotonic initial temperature dependence of the freezing start time, but it has been observed in various systems -- including colloids -- and has also become known as a mysterious relaxation phenomenon that depends on initial conditions. However, very few have previously investigated the effect in quantum systems. Now, the temperature quantum Mpemba effect can be realized over a wide range of initial conditions.

Anthropology: General Biology: Evolutionary Biology: Zoology Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

Three-eyed distant relative of insects and crustaceans reveals amazing detail of early animal evolution      (via sciencedaily.com)     Original source 

Scientists use cutting edge scanning technology to reconstruct 'fossil monster' that lived half a billion years ago. The creature's soft anatomy was well-preserved, allowing it to be imaged almost completely: It fills a gap in our understanding of the evolution of arthropods such as insects and crustaceans.

Biology: Botany Biology: Evolutionary Biology: Zoology Offbeat: Plants and Animals
Published

Curious and cryptic: New leaf insects discovered      (via sciencedaily.com)     Original source 

An international research team has described seven previously unknown species of leaf insects, also known as walking leaves. The insects belong to the stick and leaf insect order, which are known for their unusual appearance: they look confusingly similar to parts of plants such as twigs, bark or -- in the case of leaf insects -- leaves. This sophisticated camouflage provides excellent protection from predators as well as presenting a challenge to researchers. Genetic analysis enabled the researchers to discover 'cryptic species', which cannot be distinguished by their external appearance alone. The findings are not only important for the systematic study of leaf insects, but also for the protection of their diversity.

Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Mathematics: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum computer unveils atomic dynamics of light-sensitive molecules      (via sciencedaily.com) 

Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.

Offbeat: Plants and Animals
Published

Australian woman found with parasitic roundworm in her brain caught from carpet python      (via sciencedaily.com)     Original source 

The world's first case of a new parasitic infection in humans has been discovered by researchers who detected a live eight-centimeter roundworm from a carpet python in the brain of a 64- year-old Australian woman.

Biology: Zoology Ecology: Animals Offbeat: Plants and Animals
Published

Move over pythons: These snakes are the real champion eaters      (via sciencedaily.com)     Original source 

Pythons have huge appetites, but which snake would win an eating contest? Surprisingly, it's a harmless little African snake that consumes eggs whole like an amuse-bouche.

Computer Science: Quantum Computers Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

New quantum device generates single photons and encodes information      (via sciencedaily.com) 

A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Do measurements produce the reality they show us?      (via sciencedaily.com) 

The measurement values determined in sufficiently precise measurements of physical systems will vary based on the relation between the past and the future of a system determined by its interactions with the meter. This finding may explain why quantum experiments often produce paradoxical results that can contradict our common-sense idea of physical reality.

Biology: Marine Ecology: Sea Life Geoscience: Oceanography Offbeat: Earth and Climate Offbeat: Plants and Animals
Published

Scientists solve mystery of why thousands of octopus migrate to deep-sea thermal springs      (via sciencedaily.com)     Original source 

Researchers used advanced technology to study a massive aggregation of deep-sea octopus gathered at thermal springs near an extinct underwater volcano off the coast of Central California. Warm water from hydrothermal springs accelerates development of octopus embryos, giving young octopus a better chance of survival. The Octopus Garden is the largest known aggregation of octopus on the planet -- the size of this nursery, and the abundance of other marine life that thrives in this rich community, highlight the need to understand and protect the hotspots of life on the deep seafloor from threats like climate change and seabed mining.

Biology: Evolutionary Offbeat: Plants and Animals Offbeat: Space Physics: General Space: Cosmology Space: General
Published

How a cup of water can unlock the secrets of our Universe      (via sciencedaily.com)     Original source 

A researcher made a discovery that could change our understanding of the universe. He reveals that there is a range in which fundamental constants can vary, allowing for the viscosity needed for life processes to occur within and between living cells. This is an important piece of the puzzle in determining where these constants come from and how they impact life as we know it.

Biology: Biotechnology Biology: Genetics Offbeat: Plants and Animals
Published

Longevity gene from naked mole rats extends lifespan of mice      (via sciencedaily.com)     Original source 

In a groundbreaking endeavor, researchers have successfully transferred a longevity gene from naked mole rats to mice, resulting in improved health and an extension of the mouse's lifespan. The research opens exciting possibilities for unlocking the secrets of aging and extending human lifespan.