Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Biochemistry, Computer Science: Quantum Computers
Published A chemical claw machine bends and stretches when exposed to vapors



Scientists have developed a tiny 'claw machine' that is able to pick up and drop a marble-sized ball in response to exposure to chemical vapors. The findings point to a technique that can enable soft actuators--the parts of a machine that make it move--to perform multiple tasks without the need for additional costly materials. While existing soft actuators can be 'one-trick ponies' restricted to one type of movement, this novel composite film contorts itself in different ways depending on the vapor that it is exposed to.
Published A better way to make RNA drugs



RNA drugs are the next frontier of medicine, but manufacturing them requires an expensive and labor-intensive process that limits production and produces metric tons of toxic chemical waste. Researchers report a new, enzyme-based RNA synthesis method that can produce strands of RNA with both natural and modified nucleotides without the environmental hazards.
Published Neural networks made of light



Scientists propose a new way of implementing a neural network with an optical system which could make machine learning more sustainable in the future. In a new paper, the researchers have demonstrated a method much simpler than previous approaches.
Published Scientists create computer program that 'paints' the structure of molecules in the style of Piet Mondrian



Scientists have created a computer program that 'paints' the structure of molecules in the style of famous Dutch artist, Piet Mondrian. Researchers are opening eyes and minds to the beauty of molecular structure, as well as posing new questions about the form and function of the molecules themselves.
Published A comprehensive derivative synthesis method for development of new antimicrobial drugs



A method to screen a wide variety of drug candidates without laborious purification steps could advance the fight against drug-resistant bacteria.
Published Ultrasound technology can be used to boost mindfulness, study finds



In a new study, researchers used low-intensity ultrasound technology to noninvasively alter a brain region associated with activities such as daydreaming, recalling memories and envisioning the future.
Published Engineers' probe could help advance treatment for spinal cord disease, injury



Neuroscientists have used a nanosized sensor to record spinal cord neurons in free-moving mice, a feat that could lead to the development of better treatments for spinal cord disease and injury.
Published Muscle machine: How water controls the speed of muscle contraction



The flow of water within a muscle fiber may dictate how quickly muscle can contract, according to a new study.
Published Nanoplastics and 'forever chemicals' disrupt molecular structures, functionality



Researchers have made significant inroads in understanding how nanoplastics and per- and polyfluoroalkyl substances (PFAS) -- commonly known as forever chemicals -- disrupt biomolecular structure and function. The work shows that the compounds can alter proteins found in human breast milk and infant formulas -- potentially causing developmental issues downstream.
Published Quadrupolar nuclei measured by zero-field NMR



Researchers have achieved a breakthrough in zero-field nuclear magnetic resonance spectroscopy, paving the way towards benchmarking quantum chemistry calculations.
Published Bacteria form glasslike state



Dense E.coli bacteria have several similar qualities to colloidal glass. Colloids are substances made up of small particles suspended within a fluid, like ink for example. When these particles become higher in density and more packed together, they form a 'glassy state.' When researchers multiplied E.coli bacteria within a confined area, they found that they exhibited similar characteristics. More surprisingly, they also showed some other unique properties not typically found in glass-state materials. This study contributes to our understanding of glassy 'active matter,' a relatively new field of materials research which crosses physics and life science. In the long term, the researchers hope that these results will contribute to developing materials with new functional capabilities, as well as aiding our understanding of biofilms (where microorganisms stick together to form layers on surfaces) and natural bacterial colonies.
Published Atlas of proteins reveals inner workings of cells



Researchers discover how proteins behave inside cells using AI, which has the potential to guide drug design.
Published A new material derived from graphene improves the performance of neuroprostheses



Neuroprostheses allow the nervous system of a patient who has suffered an injury to connect with mechanical devices that replace paralyzed or amputated limbs. A study demonstrates in animal models how EGNITE, a derivative of graphene, allows the creation of smaller electrodes, which can interact more selectively with the nerves they stimulate, thus improving the efficacy of the prostheses.
Published A breakthrough on the edge: One step closer to topological quantum computing



Researchers have achieved a significant breakthrough in quantum materials, potentially setting the stage for advancements in topological superconductivity and robust quantum computing.
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published Implantable LED device uses light to treat deep-seated cancers



Certain types of light have proven to be an effective, minimally invasive treatment for cancers located on or near the skin when combined with a light-activated drug. But deep-seated cancers have been beyond the reach of light's therapeutic effects. To change this, engineers and scientists have devised a wireless LED device that can be implanted. This device, when combined with a light-sensitive dye, not only destroys cancer cells, but also mobilizes the immune system's cancer-targeting response.
Published Progress in development of a new high-tech kidney disease urine test



Development of a new way to accurately measure human serum albumin (HSA) levels in people with chronic kidney disease has progressed in recent testing.
Published Mining rare earth metals from electronic waste



A small molecule that naturally serves as a binding site for metals in enzymes also proves useful for separating certain rare earth metals from each other. In a proof of concept, the process extracts europium directly from fluorescent powder in used energy-saving lamps in much higher quantities than existing methods. The researchers are now working on expanding their approach to other rare earth metals. They are in the process of founding a start-up to put the recycling of these raw materials into practice.
Published It takes a cool microscope and antifreeze to really look at ice



Ice in nature is surrounded by liquid most of the time, and therefore it is key to understand how ice and liquid interact. A new study has now directly observe the precise shape of ice at the interface between ice and liquid -- by using antifreeze and a refrigerated microscope.
Published Chemistry inspired by one-pot cooking



Is it possible to create a new class of materials from very different substances using the 'one-pot synthesis' approach? Chemists explain how they enable the synthesis of such novel materials.