Showing 20 articles starting at article 41
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Mathematics: Modeling
Published Pioneering plasma-catalytic process for CO2 hydrogenation to methanol under ambient conditions



A research team reports a pioneering plasma-catalytic process for the hydrogenation of CO2 to methanol at room temperature and atmospheric pressure. This breakthrough addresses the limitations of traditional thermal catalysis, which often requires high temperatures and pressures, resulting in low CO2 conversion and methanol yield.
Published 3D laser printing with bioinks from microalgae



Microalgae such as the diatom Odontella aurita and the green alga Tetraselmis striata are especially suitable as 'biofactories' for the production of sustainable materials for 3D laser printing due to their high content in lipids and photoactive pigments. An international research team has succeeded for the first time in manufacturing inks for printing complex biocompatible 3D microstructures from the raw materials extracted from the microalgae.
Published New technology uses light to engrave erasable 3D images



Researchers invented a technique that uses a specialized light projector and a photosensitive chemical additive to imprint two- and three-dimensional images inside any polymer. The light-based engraving remains in the polymer until heat or light are applied, which erases the image and makes it ready to use again. The technology is intended for any situation where having detailed, precise visual data in a compact and easily customizable format could be critical, such as planning surgeries and developing architectural designs.
Published Researchers outline promises, challenges of understanding AI for biological discovery



Machine learning is a powerful tool in computational biology, enabling the analysis of a wide range of biomedical data such as genomic sequences and biological imaging. But when researchers use machine learning in computational biology, understanding model behavior remains crucial for uncovering the underlying biological mechanisms in health and disease. Researchers now propose guidelines that outline pitfalls and opportunities for using interpretable machine learning methods to tackle computational biology problems.
Published Finding pearls in the mud: Eco-friendly tungsten recovery from semiconductor waste



Semiconductor industry waste is typically seen as a costly disposal problem and an environmental hazard. But what if this waste could be transformed into a valuable resource? In an exciting development, researchers have unveiled an eco-friendly method to extract rare metals from semiconductor waste. This innovative approach not only recovers precious tungsten but also assesses its economic viability, offering a sustainable solution for waste management in the tech industry.
Published Chemists develop new sustainable reaction for creating unique molecular building blocks



Polymers can be thought of like trains: Just as a train is composed of multiple cars, polymers are made up of multiple monomers, and the couplings between the train cars are similar to the chemical bonds that link monomers together. While polymers have myriad applications -- from drug delivery to construction materials -- their structures and functions are restricted by the chemically similar monomer building blocks they're composed of. Now, chemists have developed a new reaction to create unique monomers in a controlled way. This reaction, which uses nickel as a catalyst, ultimately enables scientists to create polymers with unique and modifiable properties for drug delivery, energy storage, microelectronics and more.
Published Breakthrough in molecular control: New bioinspired double helix with switchable chirality



The control of artificial double-helical structures, which are essential for the development of high-order molecular systems, remains difficult. In a new study, researchers have developed novel double-helical monometallofoldamers that exhibit controllable helicity inversion and chiral information transfer, in response to external stimuli. These monometallofoldamers can lead to novel artificial supramolecular systems for molecular information transmission, amplification, replication, and other exciting applications in various fields of technology.
Published Forever chemical pollution can now be tracked



Researchers developed a way to fingerprint organofluorine compounds -- sometimes called 'forever chemicals' --which could help authorities trace them to their source when they end up in aquifers, waterways or soil.
Published Advanced chelators offer efficient and eco-friendly rare earth element recovery



The world is going to need a lot of weird metals in the coming years, according to chemistry professor. But he isn't talking about lithium, cobalt or even beryllium. He's interested in dysprosium, which is so hidden in the periodic table that you'd be forgiven for thinking he made it up.
Published Concept for efficiency-enhanced noble-metal catalysts



The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.
Published A new way of thinking about the economy could help protect the Amazon, and help its people thrive



To protect the Amazon and support the wellbeing of its people, its economy needs to shift from environmentally harmful production to a model built around the diversity of indigenous and rural communities, and standing forests.
Published Cracking the code of life: new AI model learns DNA's hidden language



With GROVER, a new large language model trained on human DNA, researchers could now attempt to decode the complex information hidden in our genome. GROVER treats human DNA as a text, learning its rules and context to draw functional information about the DNA sequences.
Published Solving the doping problem: Enhancing performance in organic semiconductors



Physicists have discovered two new ways to improve organic semiconductors. They found a way to remove more electrons from the material than previously possible and used unexpected properties in an environment known as the non-equilibrium state, boosting its performance for use in electronic devices.
Published Method prevents an AI model from being overconfident about wrong answers



Thermometer, a new calibration technique tailored for large language models, can prevent LLMs from being overconfident or underconfident about their predictions. The technique aims to help users know when a model should be trusted.
Published Sustainable catalysts: Crystal phase-controlled cobalt nanoparticles for hydrogenation



Controlling the crystal phase of cobalt nanoparticles leads to exceptional catalytic performance in hydrogenation processes, scientists report. Produced via an innovative hydrosilane-assisted synthesis method, these phase-controlled reusable nanoparticles enable the selective hydrogenation of various compounds under mild conditions without the use of harmful gases like ammonia. These efforts could lead to more sustainable and efficient catalytic processes across many industrial fields.
Published Demographics of north African human populations unravelled using genomic data and artificial intelligence



A new study places the origin of the Imazighen in the Epipaleolithic, more than twenty thousand years ago. The research concludes that the genetic origin of the current Arab population of north Africa is far more recent than previously believed, placing it in the seventh century AD. The team has designed an innovative demographic model that uses artificial intelligence to analyze the complete genomes of the two populations.
Published The next generation of RNA chips



An international research team has succeeded in developing a new version of RNA building blocks with higher chemical reactivity and photosensitivity. This can significantly reduce the production time of RNA chips used in biotechnological and medical research. The chemical synthesis of these chips is now twice as fast and seven times more efficient.
Published Researchers explore the potential of clean energy markets as a hedging tool



Clean energy investments offer potential stability and growth, especially during volatile market conditions. A recent study explored the relationship between clean energy markets and global stock markets. Significant spillovers were observed from major indices like the SP500 to markets such as Japan's Nikkei225 and Global Clean Energy Index. These interactions suggest opportunities for optimizing investment portfolios and leveraging clean energy assets as hedging tools in volatile market environments.
Published More electricity from the sun



A coating of solar cells with special organic molecules could pave the way for a new generation of solar panels. This coating can increase the efficiency of monolithic tandem cells made of silicon and perovskite while lowering their cost -- because they are produced from industrial, microstructured, standard silicon wafers.
Published Researchers identify unique phenomenon in Kagome metal



A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.