Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Energy: Fossil Fuels, Mathematics: Modeling
Published The brain may learn about the world the same way some computational models do



New studies support the idea that the brain uses a process similar to a machine-learning approach known as 'self-supervised learning.' This type of machine learning allows computational models to learn about visual scenes based solely on the similarities and differences between them, with no labels or other information.
Published Engineers develop an efficient process to make fuel from carbon dioxide



Researchers developed an efficient process that can convert carbon dioxide into formate, a nonflammable liquid or solid material that can be used like hydrogen or methanol to power a fuel cell and generate electricity.
Published AI can alert urban planners and policymakers to cities' decay



As urbanization advances around the globe, the quality of the urban physical environment will become increasingly critical to human well-being and to sustainable development initiatives. However, measuring and tracking the quality of an urban environment, its evolution and its spatial disparities is difficult due to the amount of on-the-ground data needed to capture these patterns.
Published 3D printed reactor core makes solar fuel production more efficient



Using a new 3D printing technique, researchers have developed special ceramic structures for a solar reactor. Initial experimental testing show that these structures can boost the production yield of solar fuels.
Published Single model predicts trends in employment, microbiomes, forests



Researchers report that a single, simplified model can predict population fluctuations in three unrelated realms: urban employment, human gut microbiomes and tropical forests. The model will help economists, ecologists, public health authorities and others predict and respond to variability in multiple domains.
Published To excel at engineering design, generative AI must learn to innovate, study finds



A new study reveals the pitfalls of deep generative models when they are tasked with solving engineering design problems. The researchers say if mechanical engineers want help from AI for novel ideas and designs, they'll have to refocus those models beyond 'statistical similarity.'
Published International team develops novel DNA nano engine



An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.
Published Physical theory improves protein folding prediction



Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.
Published Deep neural networks don't see the world the way we do



Computational models of hearing and vision can build up their own idiosyncratic 'invariances' -- meaning they respond the same way to stimuli with very different features, according to scientists.
Published The effects of preheating on vehicle fuel consumption and emissions appear minimal



A new study found that the benefits of car preheating for both fuel economy and emissions are minimal. The researchers focused on vehicle fuel consumption and emissions under cold winter conditions. Of particular interest were cold start emissions and their relation to preheating.
Published New organ-on-a-chip model of human synovium could accelerate development of treatments for arthritis



The synovium is a membrane-like structure that lines the knee joint and helps to keep the joint happy and healthy, mainly by producing and maintaining synovial fluid. Inflammation of this tissue is implicated in the onset and progression of arthritic diseases such as rheumatoid and osteoarthritis. Therefore, treatments that target the synovium are promising in treating these diseases. However, we need better models in the laboratory that allow us to find and test new treatments. We have developed an organ-on-a-chip based model of the human synovium, and its associated vasculature, to address this need.
Published A step towards AI-based precision medicine



Artificial intelligence, AI, which finds patterns in complex biological data could eventually contribute to the development of individually tailored healthcare. Researchers have developed an AI-based method applicable to various medical and biological issues. Their models can for instance accurately estimate people's chronological age and determine whether they have been smokers or not.
Published What is the impact of predictive AI in the health care setting?



Models built on machine learning in health care can be victims of their own success, according to researchers. Their study assessed the impact of implementing predictive models on the subsequent performance of those and other models.
Published AI language models could help diagnose schizophrenia



Scientists have developed new tools, based on AI language models, that can characterize subtle signatures in the speech of patients diagnosed with schizophrenia.
Published Researchers create a neural network for genomics -- one that explains how it achieves accurate predictions



A team of computer scientists has created a neural network that can explain how it reaches its predictions. The work reveals what accounts for the functionality of neural networks--the engines that drive artificial intelligence and machine learning--thereby illuminating a process that has largely been concealed from users.
Published Discovery made about Fischer Tropsch process could help improve fuel production



A fundamental discovery about the Fischer Tropsch process, a catalytic reaction used in industry to convert coal, natural gas or biomass to liquid fuels, could someday allow for more efficient fuel production. Researchers discovered previously unknown self-sustained oscillations in the Fischer Tropsch process. They found that unlike many catalytic reactions which have one steady state, this reaction periodically moves back and forth from a high to a low activity state. The discovery means that these well-controlled oscillatory states might be used in the future to control the reaction rate and the yields of desired products.
Published Machine learning used to probe the building blocks of shapes



Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.
Published Birders and AI push bird conservation to the next level



Big data and artificial intelligence (AI) are being used to model hidden patterns in nature, not just for one bird species, but for entire ecological communities across continents. And the models follow each species’ full annual life cycle, from breeding to fall migration to non-breeding grounds, and back north again during spring migration.
Published These robots helped explain how insects evolved two distinct strategies for flight



Robots helped achieve a major breakthrough in our understanding of how insect flight evolved. The study is a result of a six-year long collaboration between roboticists and biophysicists.
Published Groundbreaking mathematical proof: New insights into typhoon dynamics unveiled



A research team has provided irrefutable proof that certain spherical vortices exist in a stable state.