Showing 20 articles starting at article 21

< Previous 20 articles        Next 20 articles >

Categories: Mathematics: Modeling, Physics: Quantum Physics

Return to the site home page

Mathematics: Modeling
Published

Leading AI models struggle to identify genetic conditions from patient-written descriptions      (via sciencedaily.com)     Original source 

Researchers discover that while artificial intelligence (AI) tools can make accurate diagnoses from textbook-like descriptions of genetic diseases, the tools are significantly less accurate when analyzing summaries written by patients about their own health. These findings demonstrate the need to improve these AI tools before they can be applied in health care settings to help make diagnoses and answer patient questions.

Environmental: General Geoscience: Geography Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

The mother of all motion sensors      (via sciencedaily.com)     Original source 

Researchers have used silicon photonic microchip components to perform a quantum sensing technique called atom interferometry, an ultra-precise way of measuring acceleration. It is the latest milestone toward developing a kind of quantum compass for navigation when GPS signals are unavailable.

Mathematics: General Mathematics: Modeling
Published

Think fast -- or not: Mathematics behind decision making      (via sciencedaily.com)     Original source 

New research explains the mathematics behind how initial predispositions and additional information affect decision making.

Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

AI poses no existential threat to humanity, new study finds      (via sciencedaily.com)     Original source 

Large Language Models (LLMs) are entirely controllable through human prompts and lack 'emergent abilities'; that is, the means to form their own insights or conclusions. Increasing model size does not lead LLMs to gain emergent reasoning abilities, meaning they will not develop hazardous abilities and therefore do not pose an existential threat. A new study sheds light on the (until now unexplained) capabilities and shortcomings of LLMs, including the need for carefully engineered prompts to exhibit good performance.

Biology: Biochemistry Biology: General Mathematics: Modeling
Published

Researchers outline promises, challenges of understanding AI for biological discovery      (via sciencedaily.com)     Original source 

Machine learning is a powerful tool in computational biology, enabling the analysis of a wide range of biomedical data such as genomic sequences and biological imaging. But when researchers use machine learning in computational biology, understanding model behavior remains crucial for uncovering the underlying biological mechanisms in health and disease. Researchers now propose guidelines that outline pitfalls and opportunities for using interpretable machine learning methods to tackle computational biology problems.

Computer Science: Quantum Computers Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

X-ray imagery of vibrating diamond opens avenues for quantum sensing      (via sciencedaily.com)     Original source 

Scientists at three research institutions capture the pulsing motion of atoms in diamond, uncovering the relationship between the diamond's strain and the behavior of the quantum information hosted within.

Biology: General Ecology: Nature Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geography Mathematics: Modeling
Published

A new way of thinking about the economy could help protect the Amazon, and help its people thrive      (via sciencedaily.com)     Original source 

To protect the Amazon and support the wellbeing of its people, its economy needs to shift from environmentally harmful production to a model built around the diversity of indigenous and rural communities, and standing forests.

Chemistry: Biochemistry Physics: General Physics: Quantum Physics
Published

First measurement of electron- and muon-neutrino interaction rates at the highest energy ever detected from an artificial source      (via sciencedaily.com)     Original source 

Understanding neutrino interactions is crucial for obtaining a complete picture of particle physics and the universe. To date, neutrino interaction cross sections have not been measured at high energy above some hundred gigaelectronvolts at particle colliders. Now, researchers have obtained the first direct observation of electron and muon neutrino interactions in the Teraelectronvolt range at CERN's Large Hadron Collider, using the FASER detector. This study marks a significant step for particle physics research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Mathematics: Modeling
Published

Cracking the code of life: new AI model learns DNA's hidden language      (via sciencedaily.com)     Original source 

With GROVER, a new large language model trained on human DNA, researchers could now attempt to decode the complex information hidden in our genome. GROVER treats human DNA as a text, learning its rules and context to draw functional information about the DNA sequences.

Physics: General Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Cold antimatter for quantum state-resolved precision measurements      (via sciencedaily.com)     Original source 

Why does the universe contain matter and (virtually) no antimatter? Scientists have achieved an experimental breakthrough in this context. It can contribute to measuring the mass and magnetic moment of antiprotons more precisely than ever before -- and thus identify possible matter-antimatter asymmetries. They have developed a trap, which can cool individual antiprotons much more rapidly than in the past.

Mathematics: Modeling
Published

Method prevents an AI model from being overconfident about wrong answers      (via sciencedaily.com)     Original source 

Thermometer, a new calibration technique tailored for large language models, can prevent LLMs from being overconfident or underconfident about their predictions. The technique aims to help users know when a model should be trusted.

Engineering: Nanotechnology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Stacked up against the rest      (via sciencedaily.com)     Original source 

Scientists have hypothesized that moir excitons -- electron-hole pairs confined in moir interference fringes which overlap with slightly offset patterns -- may function as qubits in next-generation nano-semiconductors. However, due to diffraction limits, it has not been possible to focus light enough in measurements, causing optical interference from many moir excitons. To solve this, researchers have developed a new method of reducing these moir excitons to measure the quantum coherence time and realize quantum functionality.

Anthropology: Cultures Anthropology: General Mathematics: Modeling
Published

Demographics of north African human populations unravelled using genomic data and artificial intelligence      (via sciencedaily.com)     Original source 

A new study places the origin of the Imazighen in the Epipaleolithic, more than twenty thousand years ago. The research concludes that the genetic origin of the current Arab population of north Africa is far more recent than previously believed, placing it in the seventh century AD. The team has designed an innovative demographic model that uses artificial intelligence to analyze the complete genomes of the two populations.

Environmental: General Geoscience: Environmental Issues Mathematics: Modeling
Published

Researchers explore the potential of clean energy markets as a hedging tool      (via sciencedaily.com)     Original source 

Clean energy investments offer potential stability and growth, especially during volatile market conditions. A recent study explored the relationship between clean energy markets and global stock markets. Significant spillovers were observed from major indices like the SP500 to markets such as Japan's Nikkei225 and Global Clean Energy Index. These interactions suggest opportunities for optimizing investment portfolios and leveraging clean energy assets as hedging tools in volatile market environments.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers develop general framework for designing quantum sensors      (via sciencedaily.com)     Original source 

Researchers have designed a protocol for harnessing the power of quantum sensors. The protocol could give sensor designers the ability to fine-tune quantum systems to sense signals of interest, creating sensors that are vastly more sensitive than traditional sensors.

Offbeat: General Offbeat: Space Physics: General Physics: Optics Physics: Quantum Physics Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

What no one has seen before -- simulation of gravitational waves from failing warp drive      (via sciencedaily.com)     Original source 

Physicists have been exploring the theoretical possibility of spaceships driven by compressing the four-dimensional spacetime for decades. Although this so-called 'warp drive' originates from the realm of science fiction, it is based on concrete descriptions in general relativity. A new study takes things a step further -- simulating the gravitational waves such a drive might emit if it broke down.

Chemistry: Biochemistry Engineering: Graphene Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breaking new ground for computing technologies with electron-hole crystals      (via sciencedaily.com)     Original source 

A team developed a novel method to successfully visualise electron-hole crystals in an exotic quantum material. Their breakthrough could pave the way for new advancements in computing technologies, including in-memory and quantum computing.

Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

Breaking MAD: Generative AI could break the internet, researchers find      (via sciencedaily.com)     Original source 

Researchers have found that training successive generations of generative artificial intelligence models on synthetic data gives rise to self-consuming feedback loops.