Showing 20 articles starting at article 141

< Previous 20 articles        Next 20 articles >

Categories: Mathematics: Modeling, Mathematics: Puzzles

Return to the site home page

Mathematics: General Mathematics: Modeling
Published

Mathematics supporting fresh theoretical approach in oncology      (via sciencedaily.com)     Original source 

Mathematics, histopathology and genomics converge to confirm that the most aggressive clear cell renal cell carcinomas display low levels of intratumour heterogeneity, i.e. they contain fewer distinct cell types. The study supports the hypothesis that it would be advisable to apply therapeutic strategies to maintain high levels of cellular heterogeneity within the tumour in order to slow down the evolution of the cancer and improve human survival.  

Chemistry: Biochemistry Computer Science: Artificial Intelligence (AI) Energy: Technology Mathematics: Modeling
Published

Scientists use A.I.-generated images to map visual functions in the brain      (via sciencedaily.com)     Original source 

Researchers have demonstrated the use of AI-selected natural images and AI-generated synthetic images as neuroscientific tools for probing the visual processing areas of the brain. The goal is to apply a data-driven approach to understand how vision is organized while potentially removing biases that may arise when looking at responses to a more limited set of researcher-selected images.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Microbiology Chemistry: Biochemistry Computer Science: General Engineering: Nanotechnology Mathematics: General Mathematics: Modeling Physics: General
Published

New computer code for mechanics of tissues and cells in three dimensions      (via sciencedaily.com)     Original source 

Biological materials are made of individual components, including tiny motors that convert fuel into motion. This creates patterns of movement, and the material shapes itself with coherent flows by constant consumption of energy. Such continuously driven materials are called 'active matter'. The mechanics of cells and tissues can be described by active matter theory, a scientific framework to understand shape, flows, and form of living materials. The active matter theory consists of many challenging mathematical equations. Scientists have now developed an algorithm, implemented in an open-source supercomputer code, that can for the first time solve the equations of active matter theory in realistic scenarios. These solutions bring us a big step closer to solving the century-old riddle of how cells and tissues attain their shape and to designing artificial biological machines.

Environmental: Water Geoscience: Environmental Issues Mathematics: Modeling
Published

Dams now run smarter with AI      (via sciencedaily.com)     Original source 

Scientists have leveraged artificial intelligence models to enhance dam operations.

Computer Science: General Energy: Nuclear Energy: Technology Mathematics: General Mathematics: Modeling Physics: Acoustics and Ultrasound
Published

Nuclear expansion failure shows simulations require change      (via sciencedaily.com)     Original source 

A team of researchers looked back at a model that predicted nuclear power would expand dramatically in order to assess the efficacy of energy policies implemented today.

Computer Science: General Mathematics: Modeling
Published

New twist on AI makes the most of sparse sensor data      (via sciencedaily.com)     Original source 

An innovative approach to artificial intelligence (AI) enables reconstructing a broad field of data, such as overall ocean temperature, from a small number of field-deployable sensors using low-powered 'edge' computing, with broad applications across industry, science and medicine.

Computer Science: Encryption Computer Science: Quantum Computers Mathematics: Puzzles Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Keep it secret: Cloud data storage security approach taps quantum physics      (via sciencedaily.com)     Original source 

Distributed cloud storage is a hot topic for security researchers, and a team is now merging quantum physics with mature cryptography and storage techniques to achieve a cost-effective cloud storage solution.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Mathematics: Modeling Physics: General Physics: Optics
Published

quantum mechanics: Unlocking the secrets of spin with high-harmonic probes      (via sciencedaily.com)     Original source 

Deep within every piece of magnetic material, electrons dance to the invisible tune of quantum mechanics. Their spins, akin to tiny atomic tops, dictate the magnetic behavior of the material they inhabit. This microscopic ballet is the cornerstone of magnetic phenomena, and it's these spins that a team of researchers has learned to control with remarkable precision, potentially redefining the future of electronics and data storage.

Chemistry: Organic Chemistry Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

How to use AI for discovery -- without leading science astray      (via sciencedaily.com)     Original source 

In the same way that chatbots sometimes 'hallucinate,' or make things up, machine learning models designed for scientific applications can sometimes present misleading or downright false results. Researchers now present a new statistical technique for safely using AI predictions to test scientific hypotheses.

Environmental: General Geoscience: Environmental Issues Mathematics: Modeling
Published

AI trained to identify least green homes      (via sciencedaily.com)     Original source 

First of its kind AI-model can help policy-makers efficiently identify and prioritize houses for retrofitting and other decarbonizing measures.

Computer Science: Artificial Intelligence (AI) Mathematics: Modeling
Published

The brain may learn about the world the same way some computational models do      (via sciencedaily.com)     Original source 

New studies support the idea that the brain uses a process similar to a machine-learning approach known as 'self-supervised learning.' This type of machine learning allows computational models to learn about visual scenes based solely on the similarities and differences between them, with no labels or other information.

Environmental: General Geoscience: Environmental Issues Geoscience: Geography Mathematics: Modeling
Published

AI can alert urban planners and policymakers to cities' decay      (via sciencedaily.com)     Original source 

As urbanization advances around the globe, the quality of the urban physical environment will become increasingly critical to human well-being and to sustainable development initiatives. However, measuring and tracking the quality of an urban environment, its evolution and its spatial disparities is difficult due to the amount of on-the-ground data needed to capture these patterns.

Computer Science: General Mathematics: Puzzles
Published

Certain online games use dark designs to collect player data      (via sciencedaily.com)     Original source 

The privacy policies and practices of online games contain dark design patterns which could be deceptive, misleading, or coercive to users, according to a new study.

Environmental: Ecosystems Environmental: General Mathematics: Modeling
Published

Single model predicts trends in employment, microbiomes, forests      (via sciencedaily.com)     Original source 

Researchers report that a single, simplified model can predict population fluctuations in three unrelated realms: urban employment, human gut microbiomes and tropical forests. The model will help economists, ecologists, public health authorities and others predict and respond to variability in multiple domains.

Mathematics: Modeling Mathematics: Statistics
Published

To excel at engineering design, generative AI must learn to innovate, study finds      (via sciencedaily.com)     Original source 

A new study reveals the pitfalls of deep generative models when they are tasked with solving engineering design problems. The researchers say if mechanical engineers want help from AI for novel ideas and designs, they'll have to refocus those models beyond 'statistical similarity.' 

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Computer Science: General Engineering: Nanotechnology Mathematics: Modeling Offbeat: Computers and Math Offbeat: General
Published

International team develops novel DNA nano engine      (via sciencedaily.com)     Original source 

An international team of scientists has recently developed a novel type of nano engine made of DNA. It is driven by a clever mechanism and can perform pulsing movements. The researchers are now planning to fit it with a coupling and install it as a drive in complex nano machines.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Mathematics: Modeling
Published

Physical theory improves protein folding prediction      (via sciencedaily.com)     Original source 

Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.

Mathematics: Modeling
Published

Deep neural networks don't see the world the way we do      (via sciencedaily.com)     Original source 

Computational models of hearing and vision can build up their own idiosyncratic 'invariances' -- meaning they respond the same way to stimuli with very different features, according to scientists.

Mathematics: Modeling
Published

New organ-on-a-chip model of human synovium could accelerate development of treatments for arthritis      (via sciencedaily.com)     Original source 

The synovium is a membrane-like structure that lines the knee joint and helps to keep the joint happy and healthy, mainly by producing and maintaining synovial fluid. Inflammation of this tissue is implicated in the onset and progression of arthritic diseases such as rheumatoid and osteoarthritis. Therefore, treatments that target the synovium are promising in treating these diseases. However, we need better models in the laboratory that allow us to find and test new treatments. We have developed an organ-on-a-chip based model of the human synovium, and its associated vasculature, to address this need.