Showing 20 articles starting at article 261

< Previous 20 articles        Next 20 articles >

Categories: Mathematics: Modeling, Space: Cosmology

Return to the site home page

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Mathematics: Modeling
Published

Physical theory improves protein folding prediction      (via sciencedaily.com)     Original source 

Proteins are important molecules that perform a variety of functions essential to life. To function properly, many proteins must fold into specific structures. However, the way proteins fold into specific structures is still largely unknown. Researchers have developed a novel physical theory that can accurately predict how proteins fold. Their model can predict things previous models cannot. Improved knowledge of protein folding could offer huge benefits to medical research, as well as to various industrial processes.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Black holes could come in 'perfect pairs' in an ever expanding Universe      (via sciencedaily.com)     Original source 

Researchers have shown it's theoretically possible for black holes to exist in perfectly balanced pairs -- held in equilibrium by a cosmological force -- mimicking a single black hole.

Biology: Biochemistry Biology: Evolutionary Biology: General Geoscience: Earth Science Space: Astrophysics Space: Cosmology Space: General
Published

Scientists, philosophers identify nature's missing evolutionary law      (via sciencedaily.com)     Original source 

A new article describes 'a missing law of nature,' recognizing for the first time an important norm within the natural world's workings.   In essence, the new law states that complex natural systems evolve to states of greater patterning, diversity, and complexity. In other words, evolution is not limited to life on Earth, it also occurs in other massively complex systems, from planets and stars to atoms, minerals, and more.

Mathematics: Modeling
Published

Deep neural networks don't see the world the way we do      (via sciencedaily.com)     Original source 

Computational models of hearing and vision can build up their own idiosyncratic 'invariances' -- meaning they respond the same way to stimuli with very different features, according to scientists.

Mathematics: Modeling
Published

New organ-on-a-chip model of human synovium could accelerate development of treatments for arthritis      (via sciencedaily.com)     Original source 

The synovium is a membrane-like structure that lines the knee joint and helps to keep the joint happy and healthy, mainly by producing and maintaining synovial fluid. Inflammation of this tissue is implicated in the onset and progression of arthritic diseases such as rheumatoid and osteoarthritis. Therefore, treatments that target the synovium are promising in treating these diseases. However, we need better models in the laboratory that allow us to find and test new treatments. We have developed an organ-on-a-chip based model of the human synovium, and its associated vasculature, to address this need.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

NASA's Webb captures an ethereal view of NGC 346      (via sciencedaily.com)     Original source 

One of the greatest strengths of NASA's James Webb Space Telescope is its ability to give astronomers detailed views of areas where new stars are being born. The latest example, showcased here in a new image from Webb's Mid-Infrared Instrument (MIRI), is NGC 346 -- the brightest and largest star-forming region in the Small Magellanic Cloud.

Mathematics: Modeling
Published

A step towards AI-based precision medicine      (via sciencedaily.com)     Original source 

Artificial intelligence, AI, which finds patterns in complex biological data could eventually contribute to the development of individually tailored healthcare. Researchers have developed an AI-based method applicable to various medical and biological issues. Their models can for instance accurately estimate people's chronological age and determine whether they have been smokers or not.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Finding explanation for Milky Way's warp      (via sciencedaily.com)     Original source 

Though scientists have long known through observational data that the Milky Way is warped and its edges are flared like a skirt, no one could explain why. Now, astronomers have performed the first calculations that fully explain this phenomenon, with compelling evidence pointing to the Milky Way's envelopment in an off-kilter halo of dark matter. 

Mathematics: Modeling
Published

What is the impact of predictive AI in the health care setting?      (via sciencedaily.com)     Original source 

Models built on machine learning in health care can be victims of their own success, according to researchers. Their study assessed the impact of implementing predictive models on the subsequent performance of those and other models.

Computer Science: Artificial Intelligence (AI) Mathematics: Modeling
Published

AI language models could help diagnose schizophrenia      (via sciencedaily.com)     Original source 

Scientists have developed new tools, based on AI language models, that can characterize subtle signatures in the speech of patients diagnosed with schizophrenia.

Space: Astronomy Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Pulsars may make dark matter glow      (via sciencedaily.com)     Original source 

The central question in the ongoing hunt for dark matter is: what is it made of? One possible answer is that dark matter consists of particles known as axions. A team of astrophysicists has now shown that if dark matter consists of axions, it may reveal itself in the form of a subtle additional glow coming from pulsating stars.

Chemistry: Biochemistry Chemistry: Organic Chemistry Computer Science: General Mathematics: Modeling
Published

Researchers create a neural network for genomics -- one that explains how it achieves accurate predictions      (via sciencedaily.com)     Original source 

A team of computer scientists has created a neural network that can explain how it reaches its predictions. The work reveals what accounts for the functionality of neural networks--the engines that drive artificial intelligence and machine learning--thereby illuminating a process that has largely been concealed from users.   

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Space: Cosmology Space: General
Published

New 'Assembly Theory' unifies physics and biology to explain evolution and complexity      (via sciencedaily.com)     Original source 

An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.

Computer Science: Quantum Computers Mathematics: General Mathematics: Modeling Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Machine learning used to probe the building blocks of shapes      (via sciencedaily.com)     Original source 

Applying machine learning to find the properties of atomic pieces of geometry shows how AI has the power to accelerate discoveries in maths.

Biology: Cell Biology Biology: General Biology: Zoology Computer Science: Artificial Intelligence (AI) Computer Science: General Ecology: Nature Ecology: Research Mathematics: Modeling
Published

Birders and AI push bird conservation to the next level      (via sciencedaily.com)     Original source 

Big data and artificial intelligence (AI) are being used to model hidden patterns in nature, not just for one bird species, but for entire ecological communities across continents. And the models follow each species’ full annual life cycle, from breeding to fall migration to non-breeding grounds, and back north again during spring migration.

Offbeat: General Offbeat: Space Space: Astronomy Space: Astrophysics Space: Cosmology Space: Exploration Space: General Space: Structures and Features
Published

Bursts of star formation explain mysterious brightness at cosmic dawn      (via sciencedaily.com)     Original source 

In the James Webb Space Telescope’s (JWST) first images of the universe’s earliest galaxies, the young galaxies appear too bright, too massive and too mature to have formed so soon after the Big Bang. Using new simulations, a team of astrophysicists now has discovered that these galaxies likely are not so massive after all. Although a galaxy’s brightness is typically determined by its mass, the new findings suggest that less massive galaxies can glow just as brightly from irregular, brilliant bursts of star formation.

Space: Astrophysics Space: Cosmology Space: General Space: Structures and Features
Published

Colliding neutron stars provide a new way to measure the expansion of the Universe      (via sciencedaily.com)     Original source 

In recent years, astronomy has seen itself in a bit of crisis: Although we know that the Universe expands, and although we know approximately how fast, the two primary ways to measure this expansion do not agree. Now astrophysicists suggest a novel method which may help resolve this tension.

Biology: Biochemistry Biology: Cell Biology Biology: Microbiology Computer Science: Artificial Intelligence (AI) Mathematics: General Mathematics: Modeling
Published

Sperm swimming is caused by the same patterns that are believed to dictate zebra stripes      (via sciencedaily.com)     Original source 

Patterns of chemical interactions are thought to create patterns in nature such as stripes and spots. This new study shows that the mathematical basis of these patterns also governs how sperm tail moves.