Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Mathematics: Modeling
Published New extremely fast carbon storage technology



A new way to store carbon captured from the atmosphere works much faster than current methods without the harmful chemical accelerants they require.
Published Innovative, highly accurate AI model can estimate lung function just by using chest x-rays



An artificial intelligence (AI) model that can estimate with high accuracy a person's lung function just by using a chest radiograph has been successfully developed.
Published Hexagonal perovskite oxides: Electrolytes for next-generation protonic ceramic fuel cells



Researchers have identified hexagonal perovskite-related oxides as materials with exceptionally high proton conductivity and thermal stability. Their unique crystal structure and large number of oxygen vacancies enable full hydration and high proton diffusion, making these materials ideal candidates as electrolytes for next-generation protonic ceramic fuel cells that can operate at intermediate temperatures without degradation.
Published Visualizing short-lived intermediate compounds produced during chemical reactions



Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.
Published Ionic liquids: 'Don't shake it'



Chemists have develop innovative ionic liquid synthesis and purification technology.
Published Engineers find a way to protect microbes from extreme conditions



Researchers have now developed a new way to make microbes hardy enough to withstand extreme conditions such as heat and the manufacturing processes used to formulate the microbes into powders or pills for long-term storage.
Published New organic molecule shatters phosphorescence efficiency records and paves way for rare metal-free applications



A team has discovered that the new organic molecule thienyl diketone exhibits high-efficiency phosphorescence, achieving a rate over ten times faster than traditional materials. This breakthrough provides new guidelines for developing rare metal-free organic phosphorescent materials, promising advancements in applications like organic EL displays, lighting, and cancer diagnostics.
Published Deep machine-learning speeds assessment of fruit fly heart aging and disease, a model for human disease



Drosophila -- known as fruit flies -- are a valuable model for human heart pathophysiology, including cardiac aging and cardiomyopathy. However, a choke point in evaluating fruit fly hearts is the need for human intervention to measure the heart at moments of its largest expansion or its greatest contraction to calculate cardiac dynamics. Researchers now show a way to significantly cut the time needed for that analysis while utilizing more of the heart region, using deep learning and high-speed video microscopy.
Published Chemists synthesize an improved building block for medicines



Research could help drug developers improve the safety profiles of medications and reduce side effects.
Published Machine learning could aid efforts to answer long-standing astrophysical questions



Physicists have developed a computer program incorporating machine learning that could help identify blobs of plasma in outer space known as plasmoids. In a novel twist, the program has been trained using simulated data.
Published Mapping the surfaces of MXenes, atom by atom, reveals new potential for the 2D materials



In the decade since their discovery, the family of two-dimensional materials called MXenes has shown a great deal of promise for applications ranging from water desalination and energy storage to electromagnetic shielding and telecommunications, among others. While researchers have long speculated about the genesis of their versatility, a recent study has provided the first clear look at the surface chemical structure foundational to MXenes' capabilities.
Published Using visible light to make pharmaceutical building blocks



Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.
Published Optoelectronics gain spin control from chiral perovskites and III-V semiconductors



A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.
Published Exploring the chemical space of the exposome: How far have we gone?



Scientists have taken on the daunting challenge of mapping all the chemicals around us. They take inventory of the available science and conclude that currently a real pro-active chemical management is not feasible. To really get a grip on the vast and expanding chemical universe, they advocate the use of machine learning and AI, complementing existing strategies for detecting and identifying all molecules we are exposed to.
Published True scale of carbon impact from long-distance travel revealed



The reality of the climate impact of long-distance passenger travel has been revealed in new research.
Published Moving beyond the 80-year-old solar cell equation



Physicists have made a significant breakthrough in solar cell technology by developing a new analytical model that improves the understanding and efficiency of thin-film photovoltaic (PV) devices.
Published Novel spectroscopy technique sheds light on NOx reduction



The process that can convert pollution into benign by-products is called selective catalytic reduction, or SCR. Until now, it has been unclear how this reaction actually occurs, and contradictions have long existed between reaction models within the literature. Catalysis researchers used a technology called modulation excitation spectroscopy, or MES, to finally identify the correct pathway.
Published AI model finds the cancer clues at lightning speed



AI model finds the cancer clues at lightning speed. Researchers have developed an AI model that increases the potential for detecting cancer through sugar analyses. The AI model is faster and better at finding abnormalities than the current semi-manual method.
Published Melanin from cuttlefish ink as a sustainable biomass resource



Melanin is a ubiquitous compound in nature, produced by many organisms. However, its potential as a biomass resource to produce value-added chemicals and materials remains relatively unexplored. In a recent study, researchers investigated the chemical decomposition of melanin derived from cuttlefish ink and showcased its application in the synthesis of biopolymer films and particles. Their efforts will hopefully pave the way to the adoption of melanin upcycling.
Published Can A.I. tell you if you have osteoporosis? Newly developed deep learning model shows promise



Researchers have developed a novel deep learning algorithm that outperformed existing computer-based osteoporosis risk prediction methods, potentially leading to earlier diagnoses and better outcomes for patients with osteoporosis risk.