Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Mathematics: General, Space: General
Published Researchers upend theory about the formation of the Milky Way Galaxy



Research reveals a shocking discovery about the history of our universe: the Milky Way Galaxy's last major collision occurred billions of years later than previously thought.
Published Exotic black holes could be a byproduct of dark matter



In the first quintillionth of a second, the universe may have sprouted microscopic black holes with enormous amounts of nuclear charge, MIT physicists propose. The gravitational pull from these tiny, invisible objects could potentially explain all the dark matter that we can't see today.
Published Planet-forming disks around very low-mass stars are different



Using the James Webb Space Telescope, a team of astronomers studied the properties of a planet-forming disk around a young and very low-mass star. The results reveal the richest hydrocarbon composition seen to date in a protoplanetary disk, including the first extrasolar detection of ethane and a relatively low abundance of oxygen-bearing species. By including previous similar detections, this finding confirms a trend of disks around very low-mass stars to be chemically distinct from those around more massive stars like the Sun, influencing the atmospheres of planets forming there.
Published Olivine unlocks the secrets of the Moon's interior



New partitioning coefficients of first-transition row elements, Ga and Ge between olivine and silicate melt have been reported. New high-temperature experiments have investigated the effects of oxygen fugacity and iron content on these partition coefficients. This newly compiled dataset offers insights into interpreting trace elements found in olivine phenocrysts within lunar basalts, shedding light on the deep interior composition of the Moon.
Published Novel method of detecting high-frequency gravitational waves in planetary magnetospheres



A groundbreaking method of detecting high-frequency gravitational waves (HFGWs) has been proposed. The team's innovative approach may enable the successful detection of HFGWs by utilizing existing and technologically feasible astronomical telescopes in planetary magnetosphere, opening up new possibilities for studying the early universe and violent cosmic events in an effective and technically viable way.
Published Scientists detect slowest-spinning radio emitting neutron star ever recorded



Scientists have detected what they believe to be a neutron star spinning at an unprecedentedly slow rate -- slower than any of the more than 3,000 radio emitting neutron stars measured to date.
Published 'Weird' new planet retained atmosphere despite nearby star's relentless radiation



A rare exoplanet that should have been stripped down to bare rock by its nearby host star's intense radiation somehow grew a puffy atmosphere instead -- the latest in a string of discoveries forcing scientists to rethink theories about how planets age and die in extreme environments. Nicknamed 'Phoenix' for its ability to survive its red giant star's radiant energy discovered planet illustrates the vast diversity of solar systems and the complexity of planetary evolution -- especially at the end of stars' lives.
Published New model allows a computer to understand human emotions



Researchers have developed a model that enables computers to interpret and understand human emotions, utilizing principles of mathematical psychology. In the future, the model can help the computer to adapt its own behavior and guide an irritated or anxious user in different ways. The implications of such technology are profound, offering a glimpse into a future where computers are not merely tools, but empathetic partners in user interaction.
Published New open-source platform allows users to evaluate performance of AI-powered chatbots



Researchers have developed a platform for the interactive evaluation of AI-powered chatbots such as ChatGPT. A team of computer scientists, engineers, mathematicians and cognitive scientists developed an open-source evaluation platform called CheckMate, which allows human users to interact with and evaluate the performance of large language models (LLMs).
Published Unraveling the physics of knitting



A team used experiments and simulations to quantify and predict how knit fabric response can be programmed. By establishing a mathematical theory of knitted materials, the researchers hope that knitting -- and textiles in general -- can be incorporated into more engineering and manufacturing applications.
Published Researchers call for strengthening sustainability regulations in laws governing space exploration



Researchers call for strengthening existing planetary protection policies beyond the space surrounding Earth to include requirements for preserving the Lunar and Martian environments.
Published The embryo assembles itself



Biological processes depend on puzzle pieces coming together and interacting. Under specific conditions, these interactions can create something new without external input. This is called self-organization, as seen in a school of fish or a flock of birds. Interestingly, the mammalian embryo develops similarly. Scientists now introduce a mathematical framework that analyzes self-organization from a single cell to a multicellular organism.
Published Groundbreaking progress in quantum physics: How quantum field theories decay and fission



An international research team has sparked interest in the scientific community with results in quantum physics. In their current study, the researchers reinterpret the Higgs mechanism, which gives elementary particles mass and triggers phase transitions, using the concept of 'magnetic quivers.'
Published Martian meteorites deliver a trove of information on Red Planet's structure



Mars has a distinct structure in its mantle and crust with discernible reservoirs, and this is known thanks to meteorites that scientists have analyzed. These results are important for understanding not only how Mars formed and evolved, but also for providing precise data that can inform recent NASA missions like Insight and Perseverance and the Mars Sample Return.
Published AI-controlled stations can charge electric cars at a personal price



As more and more people drive electric cars, congestion and queues can occur when many people need to charge at the same time. A new study shows how AI-controlled charging stations, through smart algorithms, can offer electric vehicle users personalized prices, and thus minimize both price and waiting time for customers. But the researchers point to the importance of taking the ethical issues seriously, as there is a risk that the artificial intelligence exploits information from motorists.
Published Glimpses of a volcanic world: New telescope images of Jupiter's moon Io rival those from spacecraft



Combining a new imaging instrument with the powerful adaptive optics capabilities of the Large Binocular Telescope, astronomers have captured a volcanic event on Jupiter's moon Io at a resolution never before achieved with Earth-based observations.
Published Medium and mighty: Intermediate-mass black holes can survive in globular clusters



New research demonstrated a possible formation mechanism of intermediate-mass black holes in globular clusters, star clusters that could contain tens of thousands or even millions of tightly packed stars. The first ever star-by-star massive cluster-formation simulations revealed that sufficiently dense molecular clouds, the 'birthing nests' of star clusters, can give birth to very massive stars that evolve into intermediate-mass black holes.
Published NASA's James Webb Space Telescope finds most distant known galaxy



Over the last two years, scientists have used NASA's James Webb Space Telescope to explore what astronomers refer to as Cosmic Dawn -- the period in the first few hundred million years after the big bang where the first galaxies were born.
Published Moon orbiting 'dinky' asteroid is actually two tiny moons stuck together



The moon orbiting the asteroid Dinkinesh is actually two tiny moons stuck together. Collectively called 'Selam,' the two moonlets bring new insight into the complex processes behind planetary formation and evolution.
Published The case of the missing black holes



Researchers have applied the well-understood and highly verified quantum field theory, usually applied to the study of the very small, to a new target, the early universe. Their exploration led to the conclusion that there ought to be far fewer miniature black holes than most models suggest, though observations to confirm this should soon be possible. The specific kind of black hole in question could be a contender for dark matter.