Showing 20 articles starting at article 81
< Previous 20 articles Next 20 articles >
Categories: Mathematics: General, Mathematics: Modeling
Published Toxic chemicals can be detected with new AI method



Researchers have developed an AI method that improves the identification of toxic chemicals -- based solely on knowledge of the molecular structure. The method can contribute to better control and understanding of the ever-growing number of chemicals used in society, and can also help reduce the amount of animal tests.
Published New computer algorithm supercharges climate models and could lead to better predictions of future climate change



A study describes a new computer algorithm which can be applied to Earth System Models to drastically reduce the time needed to prepare these in order to make accurate predictions of future climate change. During tests on models used in IPCC simulations, the algorithm was on average 10 times faster at spinning up the model than currently-used approaches, reducing the time taken to achieve equilibrium from many months to under a week.
Published Improved AI process could better predict water supplies



A new computer model uses a better artificial intelligence process to measure snow and water availability more accurately across vast distances in the West, information that could someday be used to better predict water availability for farmers and others. The researchers predict water availability from areas in the West where snow amounts aren't being physically measured.
Published The end of the quantum tunnel



Quantum mechanical effects such as radioactive decay, or more generally: 'tunneling', display intriguing mathematical patterns. Researchers now show that a 40-year-old mathematical discovery can be used to fully encode and understand this structure.
Published From disorder to order: Flocking birds and 'spinning' particles



Researchers have demonstrated that ferromagnetism, an ordered state of atoms, can be induced by increasing particle motility and that repulsive forces between atoms are sufficient to maintain it. The discovery not only extends the concept of active matter to quantum systems but also contributes to the development of novel technologies that rely on the magnetic properties of particles, such as magnetic memory and quantum computing.
Published AI deciphers new gene regulatory code in plants and makes accurate predictions for newly sequenced genomes



Elucidating the relationship between the sequences of non-coding regulatory elements and their target genes is key to understanding gene regulation and its variation between plant species and ecotypes. Now, an international research team developed deep learning models that link gene sequence data with mRNA copy number for several plant species and predicted the regulatory effect of gene sequence variation.
Published Artificial intelligence can develop treatments to prevent 'superbugs'



Cleveland Clinic researchers developed an artficial intelligence (AI) model that can determine the best combination and timeline to use when prescribing drugs to treat a bacterial infection, based solely on how quickly the bacteria grow given certain perturbations. PNAS recently published their findings.
Published Manipulating the geometry of 'electron universe' in magnets



Researchers have discovered a unique property, the quantum metric, within magnetic materials, altering the 'electron universe' geometry. This distinct electric signal challenges traditional electrical conduction and could revolutionize spintronic devices.
Published AI tool creates 'synthetic' images of cells for enhanced microscopy analysis



Researchers have developed a method to use an image generation AI model to create realistic images of single cells, which are then used as 'synthetic data' to train an AI model to better carry out single-cell segmentation.
Published New sensing checks for 3D printed products could overhaul manufacturing sector



A sensing technology that can assess the quality of components in fields such as aerospace could transform UK industry.
Published Predicting cardiac arrhythmia 30 minutes before it happens



Atrial fibrillation is the most common cardiac arrhythmia worldwide with around 59 million people concerned in 2019. This irregular heartbeat is associated with increased risks of heart failure, dementia and stroke. It constitutes a significant burden to healthcare systems, making its early detection and treatment a major goal. Researchers have recently developed a deep-learning model capable of predicting the transition from a normal cardiac rhythm to atrial fibrillation. It gives early warnings on average 30 minutes before onset, with an accuracy of around 80%. These results pave the way for integration into wearable technologies, allowing early interventions and better patient outcomes.
Published AI weather forecasts captured Ciaran's destructive path



The study highlights the rapid progress and transformative potential of AI in weather prediction.
Published Teaching a computer to type like a human



A new typing model simulates the typing process instead of just predicting words.
Published When thoughts flow in one direction



Contrary to previous assumptions, nerve cells in the human neocortex are wired differently than in mice. The study found that human neurons communicate in one direction, while in mice, signals tend to flow in loops. This increases the efficiency and capacity of the human brain to process information. These discoveries could further the development of artificial neural networks.
Published A faster, better way to prevent an AI chatbot from giving toxic responses



A new technique can more effectively perform a safety check on an AI chatbot. Researchers enabled their model to prompt a chatbot to generate toxic responses, which are used to prevent the chatbot from giving hateful or harmful answers when deployed.
Published Novel robust-optimal controllers based on fuzzy descriptor system



The Takagi--Sugeno (T--S) fuzzy descriptor system offers a promising avenue for controlling non-linear systems but lacks optimal control strategies. Moreover, while robust control methods have been developed, they add additional complexity. To address these limitations, a team of researchers has developed novel optimal and robust-optimal controllers based on the T--S fuzzy descriptor model, holding great potential for enhanced autonomous systems.
Published Can language models read the genome? This one decoded mRNA to make better vaccines



Researchers developed a foundational language model to decode mRNA sequences and optimize those sequences for vaccine development. The tool shows broader promise as a means for studying molecular biology.
Published Computer scientists show the way: AI models need not be SO power hungry



The development of AI models is an overlooked climate culprit. Computer scientists have created a recipe book for designing AI models that use much less energy without compromising performance. They argue that a model's energy consumption and carbon footprint should be a fixed criterion when designing and training AI models.
Published The math problem that took nearly a century to solve: Secret to Ramsey numbers



Little progress had been made in solving Ramsey problems since the 1930s. Now, researchers have found the answer to r(4,t), a longstanding Ramsey problem that has perplexed the math world for decades.
Published Physics-based predictive tool will speed up battery and superconductor research



Researchers have developed physics-based guidelines that will benefit host-guest intercalated materials research. By using only two guest properties and eight host-derived descriptors, they correctly predicted the intercalation energies and stabilities of many host-guest systems. This work is an important advance that will minimize the extensive trial-and-error laboratory work that otherwise slows down research and development in battery and superconductor technologies.