Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Bringing out the color in zinc      (via sciencedaily.com)     Original source 

Researchers have synthesized a zinc complex based on two zinc centers that absorbs visible light. They demonstrated that this capability depends on the proximity of the zinc ions, where the complex responds to visible light when the zinc atoms are closer. This new property is expected to expand the utility of zinc, which already offers advantages including biological relevance, cost effectiveness, and low toxicity.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Ecotoxicity testing of micro- and nano-plastics      (via sciencedaily.com)     Original source 

An international team of researchers has published the first harmonized exposure protocol for ecotoxicity testing of microplastics and nanoplastics.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Ionic crystal generates molecular ions upon positron irradiation, finds new study      (via sciencedaily.com)     Original source 

The interaction between solid matter and positron (the antiparticle of electron) has provided important insights across a variety of disciplines, including atomic physics, materials science, elementary particle physics, and medicine. However, the experimental generation of positronic compounds by bombardment of positrons onto surfaces has proved challenging. In a new study, researchers detect molecular ion desorption from the surface of an ionic crystal when bombarded with positrons and propose a model based on positronic compound generation to explain their results.

Chemistry: Inorganic Chemistry Physics: Optics
Published

Groundbreaking study shows defects spreading through diamond faster than the speed of sound      (via sciencedaily.com)     Original source 

Settling a half century of debate, researchers have discovered that tiny linear defects can propagate through a material faster than sound waves do. These linear defects, or dislocations, are what give metals their strength and workability, but they can also make materials fail catastrophically ­– which is what happens every time you pop the pull tab on a can of soda. The fact that they can travel so fast gives scientists a new appreciation of the unusual types of damage they might do to a broad range of materials in extreme conditions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: Optics
Published

Physicists find evidence for magnetically bound excitons      (via sciencedaily.com)     Original source 

Physicists have experimentally detected how so-called Hubbard excitons form in real-time. 

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather
Published

Two-dimensional compounds can capture carbon from the air      (via sciencedaily.com)     Original source 

Some of the thinnest materials known to humankind -- MXene and MBene compounds -- may provide solutions to scientists in their quest to curb the effects of global warming. These substances are only a few atoms thick, making them two-dimensional. Because of their large surface area, the materials have the potential to absorb carbon dioxide molecules from the atmosphere, which could help reduce the harmful effects of climate change by safely sequestering carbon dioxide, according to a review study.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Physics: General Space: Cosmology Space: General
Published

New 'Assembly Theory' unifies physics and biology to explain evolution and complexity      (via sciencedaily.com)     Original source 

An international team of researchers has developed a new theoretical framework that bridges physics and biology to provide a unified approach for understanding how complexity and evolution emerge in nature. This new work on 'Assembly Theory' represents a major advance in our fundamental comprehension of biological evolution and how it is governed by the physical laws of the universe.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Electronic sensor the size of a single molecule a potential game-changer      (via sciencedaily.com)     Original source 

Researchers have developed a molecular-sized, more efficient version of a widely used electronic sensor, in a breakthrough that could bring widespread benefits.

Biology: Biochemistry Biology: Microbiology Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology
Published

Metal-loving microbes could replace chemical processing of rare earths      (via sciencedaily.com)     Original source 

Scientists have characterized the genome of a metal-loving bacteria with an affinity for rare earth elements. The research paves the way towards replacing the harsh chemical processing of these elements with a benign practice called biosorption.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Making elbow room: Giant molecular rotors operate in solid crystal      (via sciencedaily.com)     Original source 

Concave, umbrella-like metal complexes provide space to enable the largest molecular rotor operational in the solid-state.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Intense lasers shine new light on the electron dynamics of liquids      (via sciencedaily.com)     Original source 

The behavior of electrons in liquids is crucial to understanding many chemical processes that occur in our world. Using advanced lasers that operate at the attosecond, a team of international researchers has revealed further insights into how electrons behave in liquids.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Engineering: Graphene Engineering: Nanotechnology
Published

Researchers dynamically tune friction in graphene      (via sciencedaily.com)     Original source 

The friction on a graphene surface can be dynamically tuned using external electric fields, according to researchers.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

3D-printed plasmonic plastic enables large-scale optical sensor production      (via sciencedaily.com)     Original source 

Researchers have developed plasmonic plastic -- a type of composite material with unique optical properties that can be 3D-printed. This research has now resulted in 3D-printed optical hydrogen sensors that could play an important role in the transition to green energy and industry.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Toxic formaldehyde's dual nature to be probed with new chemical tool      (via sciencedaily.com)     Original source 

Newly developed ompounds aim to reveal the dual nature of formaldehyde, a chemical that is known to cause cancer but is also believed to play important roles in our biology.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Fossil Fuels Offbeat: General
Published

Scientists unveil fire-safe fuel      (via sciencedaily.com)     Original source 

Chemical engineers have designed a fuel that ignites only with the application of electric current. Since it doesn't react to flames and cannot start accidental fires during storage or transport, it is a 'safe' liquid fuel.

Biology: Biochemistry Biology: Biotechnology Biology: General Biology: Microbiology Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Geoscience: Environmental Issues
Published

Capturing CO2 with electricity: A microbial enzyme inspires electrochemistry      (via sciencedaily.com)     Original source 

Humanity continuously emits greenhouse gases and thereby worsens global warming. Increasing research efforts go into developing strategies to convert these gases, such as carbon dioxide (CO2), into valuable products. CO2 accumulates dramatically over the years and is chemically very stable, thus challenging to transform. Yet, for billions of years, some microbes have actively captured CO2 using highly efficient enzymes. Scientists have now isolated one of these enzymes. When the enzyme was electronically branched on an electrode, they observed the conversion of CO2 to formate with perfect efficiency. This phenomenon will inspire new CO2-fixation systems because of its remarkable directionality and rates.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics
Published

Accelerating sustainable semiconductors with 'multielement ink'      (via sciencedaily.com)     Original source 

Scientists have demonstrated 'multielement ink' -- the first 'high-entropy' semiconductor that can be processed at low-temperature or room temperature. The new material could enable cost-effective and energy-efficient semiconductor manufacturing.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Separating molecules requires lots of energy. This new, heat-resistant membrane could change that      (via sciencedaily.com)     Original source 

A research team has created a new, heat-resistant membrane that can withstand harsh environments -- high temperatures, high pressure and complex chemical solvents -- associated with industrial separation processes. It could eventually be used as a less energy intensive alternative to distillation and other industrial processes that separate molecules that ultimately serve as ingredients in medicine, chemicals and other products.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Geochemistry Physics: Optics
Published

How organic solar cells could become significantly more efficient      (via sciencedaily.com)     Original source 

The sun sends enormous amounts of energy to the earth. Nevertheless, some of it is lost in solar cells. This is an obstacle in the use of organic solar cells, especially for those viable in innovative applications. A key factor in increasing their performance: Improved transport of the solar energy stored within the material. Now a research group has shown that certain organic dyes can help build virtual highways for the energy.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Crystallization as the driving force      (via sciencedaily.com) 

Scientists have successfully developed nanomaterials using a so-called bottom-up approach. They exploit the fact that crystals often grow in a specific direction during crystallization. These resulting nanostructures, which appear as 'worm-like and decorated rods,' could be used in various technological applications.