Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Mathematics: Statistics
Published AI deciphers new gene regulatory code in plants and makes accurate predictions for newly sequenced genomes



Elucidating the relationship between the sequences of non-coding regulatory elements and their target genes is key to understanding gene regulation and its variation between plant species and ecotypes. Now, an international research team developed deep learning models that link gene sequence data with mRNA copy number for several plant species and predicted the regulatory effect of gene sequence variation.
Published A shortcut for drug discovery



For most human proteins, there are no small molecules known to bind them chemically (so called 'ligands'). Ligands frequently represent important starting points for drug development but this knowledge gap critically hampers the development of novel medicines. Researchers at CeMM, in a collaboration with Pfizer, have now leveraged and scaled a method to measure the binding activity of hundreds of small molecules against thousands of human proteins. This large-scale study revealed tens of thousands of ligand-protein interactions that can now be explored for the development of chemical tools and therapeutics. Moreover, powered by machine learning and artificial intelligence, it allows unbiased predictions of how small molecules interact with all proteins present in living human cells. These groundbreaking results have been published in the journal Science (DOI: 10.1126/science.adk5864), and all generated data and models are freely available for the scientific community.
Published Nanomaterial that mimics proteins could be basis for new neurodegenerative disease treatments



A newly developed nanomaterial that mimics the behavior of proteins could be an effective tool for treating Alzheimer's and other neurodegenerative diseases. The nanomaterial alters the interaction between two key proteins in brain cells -- with a potentially powerful therapeutic effect.
Published The longer spilled oil lingers in freshwater, the more persistent compounds it produces



Oil is an important natural resource for many industries, but it can lead to serious environmental damage when accidentally spilled. While large oil spills are highly publicized, every year there are many smaller-scale spills into lakes, rivers and oceans. The longer that oil remains in freshwater, the more chemical changes it undergoes, creating products that can persist in the environment.
Published The secret to saving old books could be gluten-free glues



'Bookworm' is a cute thing to call a voracious reader, but actual bookworms -- as well as microorganisms and time -- break down the flour pastes commonly used to keep old publications in one piece. Now, researchers have analyzed the proteins in wheat-based glues applied in historic bookbinding to provide insights on their adhesiveness and how they degrade. This information could help conservators restore and preserve treasured tomes for future generations.
Published Biophysics: Testing how well biomarkers work



Researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy.
Published A chemical mystery solved -- the reaction explaining large carbon sinks



A mystery that has puzzled the scientific community for over 50 years has finally been solved. A team has discovered that a certain type of chemical reaction can explain why organic matter found in rivers and lakes is so resistant to degradation.
Published Researchers create artificial cells that act like living cells



Researchers describe the steps they took to manipulate DNA and proteins -- essential building blocks of life -- to create cells that look and act like cells from the body. This accomplishment, a first in the field, has implications for efforts in regenerative medicine, drug delivery systems and diagnostic tools.
Published New copper-catalyzed C-H activation strategy



Inspired by what human liver enzymes can do, chemists have developed a new set of copper-catalyzed organic synthesis reactions for building and modifying pharmaceuticals and other molecules. The new reactions are expected to be widely used in drug discovery and optimization, as well as in other chemistry-based industries.
Published Light show in living cells



Observing proteins precisely within cells is extremely important for many branches of research but has been a significant technical challenge -- especially in living cells, as the required fluorescent labeling had to be individually attached to each protein. The research group has now overcome this hurdle: With a method called 'vpCells,' it is possible to label many proteins simultaneously, using five different fluorescent colors.
Published From defects to order: Spontaneously emerging crystal arrangements in perovskite halides



A new hybrid layered perovskite featuring elusive spontaneous defect ordering has been found, report scientists. By introducing specific concentrations of thiocyanate ions into FAPbI3 (FA = formamidinium), they observed that ordered columnar defects appeared in the stacked crystalline layers, taking up one-third of the lattice space. These findings could pave the way to an innovative strategy for adjusting the properties of hybrid perovskites, leading to practical advances in optoelectronics and energy generation.
Published Researchers advance pigment chemistry with moon-inspired reddish magentas



A researcher who made color history in 2009 with a vivid blue pigment has developed durable, reddish magentas inspired by lunar mineralogy and ancient Egyptian chemistry.
Published Innovative antiviral defense with new CRISPR tool



The rise of RNA viruses like SARS-CoV-2 highlights the need for new ways to fight them. RNA-targeting tools like CRISPR/Cas13 are powerful but inefficient in the cytoplasm of cells, where many RNA viruses replicate. Scientists have devised a solution: Cas13d-NCS. This new molecular tool allows CRISPR RNA molecules that are located within the nucleus of a cell to move to the cytoplasm, making it highly effective at neutralizing RNA viruses. This advancement opens doors for precision medicine and proactive viral defense strategies.
Published A new spin on organic shampoo makes it sudsier, longer lasting



While there's no regulation in the U.S. for what's in organic shampoos, they tend to contain ingredients perceived as safe or environmentally friendly. However, these 'clean' shampoos separate and spoil faster than those made with synthetic stabilizers and preservatives. Now, researchers demonstrate that a simple process -- spinning organic shampoo at high speeds -- improved the final products' shelf lives and ability to clean hair.
Published Nanoscale movies shed light on one barrier to a clean energy future



New research is shedding light on one barrier to a clean energy future: corrosion. Using nanoscale imaging techniques, researchers have captured high-resolution videos of tiny crystals of ruthenium dioxide -- a key ingredient used to produce clean-burning hydrogen -- as they are eaten away by their acidic environment. The research could pave the way to more durable catalysts and dramatically extend the lifetime of devices needed to turn hydrogen green.
Published New strategy for assessing the applicability of reactions



Chemists show that a machine-based method prevents widespread 'bias' in chemical publications.
Published How climate change will impact food production and financial institutions



Researchers have developed a new method to predict the financial impacts climate change will have on agriculture, which can help support food security and financial stability for countries increasingly prone to climate catastrophes.
Published Protecting art and passwords with biochemistry



A new molecular test method helps to prove the authenticity of works of art. The new method could also help to make passwords secure against quantum computers.
Published How scientists are accelerating chemistry discoveries with automation



Scientists have developed an automated workflow that could accelerate the discovery of new pharmaceutical drugs and other useful products. The new automated approach could analyze chemical reactions in real time and identify new chemical-reaction products much faster than current laboratory methods.
Published A simple, inexpensive way to make carbon atoms bind together



The active ingredient in many drugs is what's known as a small molecule: bigger than water, much smaller than an antibody and mainly made of carbon. It's tough, however, to make these molecules if they require a quaternary carbon -- a carbon atom bonded to four other carbon atoms. But now, scientists have uncovered a potential cost-effective way to produce these tricky motifs.