Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

The mutual neutralization of hydronium and hydroxide      (via sciencedaily.com)     Original source 

Researchers have been able to directly visualize the neutral products of the mutual neutralization of hydronium and hydroxide, and report three different product channels: two channels were attributed to a predominant electron-transfer mechanism, and a smaller channel was associated with proton transfer. The two-beam collision experiment is an important step toward understanding the quantum dynamics of this fundamental reaction.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists synthesize unique anticancer molecules using novel approach      (via sciencedaily.com)     Original source 

Nearly 30 years ago, scientists discovered a unique class of anticancer molecules in a family of bryozoans, a phylum of marine invertebrates found in tropical waters. The chemical structures of these molecules, which consist of a dense, highly complex knot of oxidized rings and nitrogen atoms, has attracted the interest of organic chemists worldwide, who aimed to recreate these structures from scratch in the laboratory. However, despite considerable effort, it has remained an elusive task. Until now, that is. A team of chemists has succeeded in synthesizing eight of the compounds for the first time using an approach that combines inventive chemical strategy with the latest technology in small molecule structure determination.

Chemistry: Biochemistry Chemistry: General Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Advanced artificial photosynthesis catalyst uses CO2 more efficiently to create biodegradable plastics      (via sciencedaily.com)     Original source 

A research team that had previously succeeded in synthesizing fumaric acid using bicarbonate and pyruvic acid, and carbon dioxide collected directly from the gas phase as one of the raw materials, has now created a new photosensitizer and developed a new artificial photosynthesis technology, effectively doubling the yield of fumaric acid production compared to the previous method. The results of this research are expected to reduce carbon dioxide emissions and provide an innovative way to produce biodegradable plastics while reusing waste resources.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

With just a little electricity, researchers boost common catalytic reactions      (via sciencedaily.com)     Original source 

A simple new technique could boost the efficiency of some key chemical processing, by up to a factor of 100,000, researchers report. The reactions are at the heart of petrochemical processing, pharmaceutical manufacturing, and many other industrial chemical processes.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Not only in information technology: Restart also works in chemical simulations      (via sciencedaily.com)     Original source 

Scientists have discovered that a known practice in information technology can also be applied to chemistry. Researchers found that to enhance the sampling in chemical simulations, all you need to do is stop and restart.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Key advance for capturing carbon from the air      (via sciencedaily.com)     Original source 

A chemical element so visually striking that it was named for a goddess shows a 'Goldilocks' level of reactivity -- neither too much nor too little -- that makes it a strong candidate as a carbon scrubbing tool.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Towards A Better Way of Releasing Hydrogen Stored in Hydrogen Boride Sheets      (via sciencedaily.com)     Original source 

Hydrogen stored in hydrogen boride sheets can be efficiently released electrochemically, report scientists. Through a series of experiments, they demonstrated that dispersing these sheets in an organic solvent and applying a small voltage is enough to release all the stored hydrogen efficiently. These findings suggest hydrogen boride sheets could soon become a safe and convenient way to store and transport hydrogen, which is a cleaner and more sustainable fuel.

Computer Science: General Computer Science: Quantum Computers Mathematics: Statistics Offbeat: Computers and Math Offbeat: General
Published

Researchers show classical computers can keep up with, and surpass, their quantum counterparts      (via sciencedaily.com)     Original source 

A team of scientists has devised means for classical computing to mimic a quantum computing with far fewer resources than previously thought. The scientists' results show that classical computing can be reconfigured to perform faster and more accurate calculations than state-of-the-art quantum computers.

Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Illuminating the invisible: Detecting proteins linked to diseases      (via sciencedaily.com)     Original source 

Engineers have pioneered a new way to visualize the smallest protein clusters, skirting the physical limitations of light-powered microscopes and opening new avenues for detecting the proteins implicated in diseases like Alzheimer's and testing new treatments.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

BESSY II: Molecular orbitals determine stability      (via sciencedaily.com)     Original source 

Carboxylic acid dianions (fumarate, maleate and succinate) play a role in coordination chemistry and to some extent also in the biochemistry of body cells. A team has now analyzed their electronic structures using RIXS in combination with DFT simulations. The results provide information not only on electronic structures but also on the relative stability of these molecules which can influence an industry's choice of carboxylate dianions, optimizing both the stability and geometry of coordination polymers.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries
Published

Chemists decipher reaction process that could improve lithium-sulfur batteries      (via sciencedaily.com)     Original source 

Lithium-sulfur batteries have exceptional theoretical capacity and performance in combination with an element in abundant supply. But the intricate reaction mechanism, particularly during discharge, has been challenging to solve. Researchers have identified the key pathways to a complex sulfur reduction reaction that leads to energy loss and reduced battery life span. The study's findings establish the whole reaction network for the first time and offer insight into electrocatalyst design for improved batteries.

Chemistry: Biochemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Energy: Batteries Energy: Fossil Fuels Environmental: General Geoscience: Environmental Issues
Published

Improving fuel cell durability with fatigue-resistant membranes      (via sciencedaily.com)     Original source 

In hydrogen fuel cells, electrolyte membranes frequently undergo deformation and develop cracks during operation. A research team has recently introduced a fatigue-resistant polymer electrolyte membrane for hydrogen fuel cells, employing an interpenetrating network of Nafion (a plastic electrolyte) and perfluoropolyether (a rubbery polymer). This innovation will not only improve fuel cell vehicles but also promises advancements in diverse technologies beyond transportation, spanning applications from drones to desalination filters and backup power sources.

Chemistry: Biochemistry Chemistry: Organic Chemistry Engineering: Graphene Engineering: Nanotechnology Environmental: Water
Published

Ultra-sensitive lead detector could significantly improve water quality monitoring      (via sciencedaily.com)     Original source 

Engineers have developed an ultra-sensitive sensor made with graphene that can detect extraordinarily low concentrations of lead ions in water. The device achieves a record limit of detection of lead down to the femtomolar range, which is one million times more sensitive than previous technologies.

Chemistry: General Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

Edge-to-edge assembly technique for 2D nanosheets      (via sciencedaily.com)     Original source 

A research team develops edge-to-edge assembly technique for 2D nanosheets.

Chemistry: General Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Intensifying the production of high-value compounds from industrial waste      (via sciencedaily.com)     Original source 

New research demonstrates how glycerol carbonate, a biosourced industrial additive, can be produced in record time using CO2 and a by-product of the cooking oil recycling industry. The process relies on a hybrid approach combining fundamental physical organic chemistry and applied flow process technology. Two industrial wastes are thus converted into glycerol carbonate, a biosourced rising star with high added-value.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Chemistry: Biochemistry Chemistry: Organic Chemistry
Published

Groundbreaking genome editing tools unlock new possibilities for precision medicine      (via sciencedaily.com)     Original source 

A team of researchers has achieved a major breakthrough in genome editing technology. They've developed a cutting-edge method that combines the power of designer-recombinases with programmable DNA-binding domains to create precise and adaptable genome editing tools.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing
Published

Small yet mighty: Showcasing precision nanocluster formation with molecular traps      (via sciencedaily.com)     Original source 

Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology
Published

High-efficiency carbon dioxide electroreduction system reduces our carbon footprint and progressing carbon neutrality goals      (via sciencedaily.com)     Original source 

Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions.