Showing 20 articles starting at article 781
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: General
Published Balancing biodiversity, climate change, food for a trifecta


Scientists identify ways landowners in rural Brazil can find win-win situations with biodiversity and farming.
Published Invasive species are animals, too: Considering a humane approach


Invasive alien species are animals that may pose a threat to biodiversity, but it's time to deal with that threat in a more ethical way.
Published Pioneering beyond-silicon technology via residue-free field effect transistors


Beyond-silicon technology demands ultra-high-performance field-effect transistors (FETs). Transition metal dichalcogenides (TMDs) provide an ideal material platform, but the device performances such as contact resistance, on/off ratio, and mobility are often limited by the presence of interfacial residues caused by transfer procedures. We show an ideal residue-free transfer approach using polypropylene carbonate (PPC) with a negligible residue for monolayer MoS2. By incorporating bismuth semimetal contact with atomically clean monolayer MoS2-FET on h-BN substrate, we obtain an ultralow Ohmic contact resistance approaching the quantum limit and a record-high on/off ratio of ~1011 at 15 K. Such an ultraclean fabrication approach could be the ideal platform for high-performance electrical devices using large-area semiconducting TMDs.
Published Large herbivores keep invasive plants at bay


Elephants, buffaloes and other heavy herbivores are effective against invasive plants. This is the conclusion of a new study that used Indian data, including data from the world's largest survey of wildlife based on camera traps. But smaller animals can do the same: you don't need elephants to get the same effect, the researchers point out.
Published Farms that create habitat key to food security and biodiversity


Diversified farming is an important complement to forest protections for reversing tropical biodiversity declines.
Published Better cybersecurity with new material


Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.
Published Striking gold with molecular mystery solution for potential clean energy


Hydrogen spillover is exactly what it sounds like. Small metal nanoparticles anchored on a thermally stable oxide, like silica, comprise a major class of catalysts, which are substances used to accelerate chemical reactions without being consumed themselves. The catalytic reaction usually occurs on the reactive -- and expensive -- metal, but on some catalysts, hydrogen atom-like equivalents literally spill from the metal to the oxide. These hydrogen-on-oxide species are called 'hydrogen spillover.'
Published Peering into nanofluidic mysteries one photon at a time



Researchers have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.
Published A step closer to digitizing the sense of smell: Model describes odors better than human panelists


A main crux of neuroscience is learning how our senses translate light into sight, sound into hearing, food into taste, and texture into touch. Smell is where these sensory relationships get more complex and perplexing. To address this question, a research team are investigating how airborne chemicals connect to odor perception in the brain. They discovered that a machine-learning model has achieved human-level proficiency at describing, in words, what chemicals smell like.
Published Growing triple-decker hybrid crystals for lasers


By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.
Published Watching a bimetallic catalytic surface in action


A team of researchers addressed the question: what happens to a Ga-promoted Cu surface under reaction conditions required for the synthesis of methanol? They found complex structural transformations of this bimetallic catalyst that might change the common view on the catalytically active surface structure.
Published Coastal fisheries show surprising resilience to marine heat waves


New research found that marine heat waves -- prolonged periods of unusually warm ocean temperatures -- haven't had a lasting effect on the fish communities that feed most of the world. The finding is in stark contrast to the devastating effects seen on other marine ecosystems cataloged by scientists after similar periods of warming, including widespread coral bleaching and harmful algal blooms.
Published Taking photoclick chemistry to the next level


Researchers have been able to substantially improve photoclick chemistry. They were able to boost the reactivity of the photoclick compound in the popular PQ-ERA reaction through strategic molecular substitution. They now report a superb photoreaction quantum yield, high reaction rates and notable oxygen tolerance.
Published Surpassing the human eye: Machine learning image analysis rapidly determines chemical mixture composition


Machine learning model provides quick method for determining the composition of solid chemical mixtures using only photographs of the sample.
Published New 'droplet battery' could pave the way for miniature bio-integrated devices


Researchers have developed a miniature battery that could be used to power tiny devices integrated into human tissues. The design uses an ionic gradient across a chain of droplets -- inspired by how electric eels generate electricity. The device was able to regulate the biological activity of human neurons. This could open the way to the development of tiny bio-integrated devices, with a range of applications in biology and medicine.
Published A first for ferrocene: Organometallic capsule with unusual charge-transfer interactions


An organometallic capsule that can reversibly assemble and disassemble in response to chemical stimuli was recently developed by chemists. Comprising ferrocene-based bent amphiphiles, this new capsule can act as a host for various types of guest molecules, such as electron acceptors and dyes. Thanks to the controllable release of its cargo, the capsule would find applications in catalysis, medicine, and biotechnology.
Published Direct power generation from methylcyclohexane using solid oxide fuel cells



Methylcyclohexane is very promising as a hydrogen carrier that can safely and efficiently transport and store hydrogen. However, the dehydrogenation process using catalysts has issues due to its durability and large energy loss. Recently, researchers have succeeded in using solid oxide fuel cells to generate electricity directly from methylcyclohexane and recover toluene for reuse. This research is expected to not only reduce energy requirements but also explore new chemical synthesis by fuel cells.
Published Broken by bison, aspen saplings having a tough time in northern Yellowstone


In northern Yellowstone National Park, saplings of quaking aspen, an ecologically important tree in the American West, are being broken by a historically large bison herd, affecting the comeback of aspen from decades of over-browsing by elk.
Published Quantum computer unveils atomic dynamics of light-sensitive molecules


Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.
Published Making the invisible, visible: New method makes mid-infrared light detectable at room temperature


Scientists have developed a new method for detecting mid-infrared (MIR) light at room temperature using quantum systems.