Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Chemistry: General, Ecology: General
Published Scientists 'break the mould' by creating new colors of 'blue cheese'



Experts have discovered how to create different colors of blue cheese. After discovering how the classic blue-green veining is created, a team of experts were able to create a variety of different fungal strains that could be used to make cheese with colors ranging from white to yellow-green to red-brown-pink and light and dark blues.
Published Small but mighty -- study highlights the abundance and importance of the ocean's tiniest inhabitants



New research sheds light on tiny plankton, which measure less than 0.02mm in diameter but can make up more than 70% of the plankton biomass found in the ocean.
Published How food availability could catalyze cultural transmission in wild orangutans



The proverb "necessity is the mother of invention" has been used to describe the source from which our cultural evolution springs. After all, need in times of scarcity has forced humans to continually invent new technologies that have driven the remarkable cumulative culture of our species. But an invention only becomes cultural if it is learned and spread by many individuals. In other words, the invention must be socially transmitted. But what are the forces that drive social transmission?
Published Edge-to-edge assembly technique for 2D nanosheets



A research team develops edge-to-edge assembly technique for 2D nanosheets.
Published Scammed! Animals 'led by the nose' to leave plants alone



Fake news works for wallabies and elephants. Herbivores can cause substantial damage to crops or endangered or protected plants, with traditional methods to deter foraging lethal, expensive or ineffective. Biologists are now using aromas from plants naturally repellent with remarkable success to deter the animals.
Published How leafcutter ants cultivate a fungal garden to degrade plants and provide insights into future biofuels



Scientists developed a new method to map exactly how a fungus works with leafcutter ants in a complex microbial community to degrade plant material at the molecular level. The team's insights are important for biofuels development.
Published Single proton illuminates perovskite nanocrystals-based transmissive thin scintillators



Researchers have developed a transmissive thin scintillator using perovskite nanocrystals, designed for real-time tracking and counting of single protons. The exceptional sensitivity is attributed to biexcitonic radiative emission generated through proton-induced upconversion and impact ionization.
Published Key dynamics of 2D nanomaterials: View to larger-scale production



A team of researchers mapped out how flecks of 2D materials move in liquid -- knowledge that could help scientists assemble macroscopic-scale materials with the same useful properties as their 2D counterparts.
Published Intensifying the production of high-value compounds from industrial waste



New research demonstrates how glycerol carbonate, a biosourced industrial additive, can be produced in record time using CO2 and a by-product of the cooking oil recycling industry. The process relies on a hybrid approach combining fundamental physical organic chemistry and applied flow process technology. Two industrial wastes are thus converted into glycerol carbonate, a biosourced rising star with high added-value.
Published Engineers unmask nanoplastics in oceans for the first time, revealing their true shapes and chemistry



Millions of tons of plastic waste enter the oceans each year. The sun's ultraviolet light and ocean turbulence break down these plastics into invisible nanoparticles that threaten marine ecosystems. In a new study, engineers have presented clear images of nanoplastics in ocean water off the coasts of China, South Korea and the United States, and in the Gulf of Mexico. These tiny plastic particles, which originated from such consumer products as water bottles, food packaging and clothing, were found to have surprising diversity in shape and chemical composition.
Published Discovery of a third RNA virus linage in extreme environments Jan 17, 2024



A research group has discovered a novel RNA viral genome from microbes inhabiting a high-temperature acidic hot spring. Their study shows that RNA viruses can live in high-temperature environments (70-80 degrees Celsius), where no RNA viruses have been observed before. In addition to the two known RNA virus kingdoms, a third kingdom may exist.
Published Machine learning guides carbon nanotechnology



Carbon nanostructures could become easier to design and synthesize thanks to a machine learning method that predicts how they grow on metal surfaces. The new approach will make it easier to exploit the unique chemical versatility of carbon nanotechnology.
Published Ambitious roadmap for circular carbon plastics economy



Researchers have outlined ambitious targets to help deliver a sustainable and net zero plastic economy. The authors argue for a rethinking of the technical, economic, and policy paradigms that have entrenched the status-quo, one of rising carbon emissions and uncontrolled pollution.
Published Decarbonizing the world's industries



Harmful emissions from the industrial sector could be reduced by up to 85% across the world, according to new research. The sector, which includes iron and steel, chemicals, cement, and food and drink, emits around a quarter of global greenhouse gas (GHG) emissions -- planet-warming gases that result in climate change and extreme weather.
Published New research shows how pollutants from aerosols and river run-off are changing the marine phosphorus cycle in coastal seas



New research sheds light on how pollutants from aerosols and river run-off are impacting coastal seas. The research identified an 'Anthropogenic Nitrogen Pump' which changes the phosphorus cycle and therefore likely coastal biodiversity and associated ecosystem services.
Published Small yet mighty: Showcasing precision nanocluster formation with molecular traps



Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.
Published Some plastic straws degrade quicker than others



Not all plastics are created the same, and some last longer in the ocean than others. Scientists have been working for years to quantify the environmental lifetimes of a wide range of plastic goods to see which have the shortest and longest lifespans in the ocean. To determine what plastics persist in the ocean, the team tests different products in large tanks that recreate the natural ocean environment.
Published Rising sea levels could lead to more methane emitted from wetlands



A Bay Area wetlands ecosystem that was expected to serve as a carbon sink is emitting surprisingly high levels of methane, a potent greenhouse gas. The study suggests factors governing carbon cycles in these habitats are even more complex than we thought.
Published High-efficiency carbon dioxide electroreduction system reduces our carbon footprint and progressing carbon neutrality goals



Global warming continues to pose a threat to human society and the ecological systems, and carbon dioxide accounts for the largest proportion of the greenhouse gases that dominate climate warming. To combat climate change and move towards the goal of carbon neutrality, researchers have developed a durable, highly selective and energy-efficient carbon dioxide (CO2) electroreduction system that can convert CO2 into ethylene for industrial purposes to provide an effective solution for reducing CO2 emissions.
Published Researchers control biofilm formation using optical traps



Researchers showed that biofilm formation can be controlled with laser light in the form of optical traps. The findings could allow scientists to harness biofilms for various bioengineering applications.