Showing 20 articles starting at article 141
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: Research
Published Towards non-toxic antifouling agents: A novel method for total synthesis of scabrolide F



Norcembranolide diterpenes, isolated from the soft corals of the genus Sinularia, are important compounds for the development of new drugs, owing to their diverse biological activities. However, total synthesis methods for these compounds are scarce. Now, a team of researchers has achieved the total synthesis of scabrolide F, a norcembranolide diterpene. They also revealed its non-toxic antifouling properties. This novel method can lead to the development of new drugs and antifouling agents.
Published Plankton researchers urge their colleagues to mix it up



A new article encourages researchers to focus their attention on mixoplankton, providing a set of methodologies to help expand our understanding of this critically important component of the marine ecosystem.
Published Frog 'saunas' a lifeline for endangered frog populations



New biologist-designed shelters will help endangered frogs survive the devastating impacts of a deadly fungal disease by regulating their body temperature to fight off infections.
Published Researchers discover new flat electronic bands, paving way for advanced quantum materials



Scientists predict the existence of flat electronic bands at the Fermi level, a finding that could enable new forms of quantum computing and electronic devices.
Published Fuel treatments reduce future wildfire severity



There is a common belief that prescribed burning, thinning trees, and clearing underbrush reduce risks of the severity of future fires. But is that true? A new project analyzing 40 studies where wildfire burned into different vegetation treatments, spanning 11 western states. Researchers found overwhelming evidence that in seasonally dry mixed conifer forests in the western U.S., reducing surface and ladder fuels and tree density through thinning, coupled with prescribed burning or pile burning, could reduce future wildfire severity by more than 60% relative to untreated areas.
Published Novel application of optical tweezers: Colorfully showing molecular energy transfer



Using a novel non-contact approach, a research team has successfully controlled the speed and efficiency of Forster resonance energy transfer between fluorescent molecules by varying the intensity of a laser beam.
Published Boosting biodiversity without hurting local economies



Protected areas, like nature reserves, can conserve biodiversity without harming local economic growth, countering a common belief that conservation restricts development. A new study outlines what is needed for conservation to benefit both nature and people.
Published Novel catalysts for improved methanol production using carbon dioxide dehydrogenation



Encapsulating copper nanoparticles within hydrophobic porous silicate crystals has been shown to significantly enhance the catalytic activity of copper-zinc oxide catalysts used in methanol synthesis via CO2 hydrogenation. The innovative encapsulation structure effectively inhibits the thermal aggregation of copper particles, leading to enhanced hydrogenation activity and increased methanol production. This breakthrough paves the way for more efficient methanol synthesis from CO2.
Published Non-native plants and animals expanding ranges 100 times faster than native species



An international team of scientists has recently found that non-native species are expanding their ranges many orders of magnitude faster than native ones, in large part due to inadvertent human help. Even seemingly sedentary non-native plants are moving at three times the speed of their native counterparts in a race where, because of the rapid pace of climate change and its effect on habitat, speed matters. To survive, plants and animals need to be shifting their ranges by 3.25 kilometers per year just to keep up with the increasing temperatures and associated climactic shifts -- a speed that native species cannot manage without human help.
Published Researchers create new class of materials called 'glassy gels'



Researchers have created a new class of materials called 'glassy gels' that are very hard and difficult to break despite containing more than 50% liquid. Coupled with the fact that glassy gels are simple to produce, the material holds promise for a variety of applications.
Published Natural hazards threaten over three thousand species



Natural hazards can speed up the extinction process of land animals that have limited distribution and/or small populations. But there is hope to turn the negative development around, says researchers behind new study.
Published Custom-made molecules designed to be invisible while absorbing near-infrared light



Researchers used theoretical calculations assessing electron orbital symmetry to synthesize new molecule designed to be both transparent and colorless while absorbing near-infrared light. This compound demonstrates the first systematic approach to producing such materials and have applications in advanced electronics. This compound also shows semiconducting properties.
Published MXenes for energy storage



A new method in spectromicroscopy significantly improves the study of chemical reactions at the nanoscale, both on surfaces and inside layered materials. Scanning X-ray microscopy (SXM) at MAXYMUS beamline of BESSY II enables the investigation of chemical species adsorbed on the top layer (surface) or intercalated within the MXene electrode (bulk) with high chemical sensitivity.
Published Novel method for measuring nano/microplastic concentrations in soil using spectroscopy



Current techniques for measuring nano/microplastic (N/MP) concentrations in soil require the soil organic matter content to be separated and have limited resolution for analyzing N/MPs sized <1 m. Therefore, researchers have developed a novel yet simple method to measure N/MP concentration in different soil types using spectroscopy at two wavelengths. This method does not require the soil to be separated in order to detect the N/MPs and can accurately quantify N/MPs regardless of their size.
Published Golden ball mills as green catalysts



A gold-coated milling vessel for ball mills proved to be a real marvel: without any solvents or environmentally harmful chemicals, the team was able to use it to convert alcohols into aldehydes. The catalytic reaction takes place at the gold surface and is mechanically driven. The vessel can be reused multiple times. 'This opens up new prospects for the use of gold in catalysis and shows how traditional materials can contribute to solving modern environmental problems in an innovative way,' says Borchardt.
Published Previously uncharacterized parasite uncovered in fish worldwide



Using genome reconstruction, scientists unveiled a once 'invisible' fish parasite present in many marine fish world-wide that belongs to the apicomplexans, one of the most important groups of parasites at a clinical level. However, it had gone unnoticed in previous studies. The parasite is geographically and taxonomically widespread in fish species around the planet, with implications for commercial fishing and oceanic food webs.
Published Reduction of esters by a novel photocatalyst



A ubiquitous compound, called ester can be broken down to produce desirable alcohols and other chemicals for use across industries including pharmaceuticals and cosmetics, but the process can be costly, both financially and in terms of the environment. Researchers developed a novel photocatalyst 'N-BAP.' When irradiated with blue light, the photocatalyst reduces esters in the presence of oxalate, a negatively charged molecule found widely in nature, resulting in the desired alcohols.
Published A liquid crystal source of photon pairs



Spontaneous parametric down-conversion (SPDC), as a source of entangled photons, is of great interest for quantum physics and quantum technology, but so far it could be only implemented in solids. Researchers have demonstrated, for the first time, SPDC in a liquid crystal. The results open a path to a new generation of quantum sources: efficient and electric-field tunable.
Published Sharks have depleted functional diversity compared to the last 66 million years



New research has found that sharks retained high levels of functional diversity for most of the last 66 million years, before steadily declining over the last 10 million years to its lowest value in the present day.
Published Scientists preserve DNA in an amber-like polymer



With their 'T-REX' method, researchers developed a glassy, amber-like polymer that can be used for long-term storage of DNA, such as entire human genomes or digital files such as photos.