Showing 20 articles starting at article 581
< Previous 20 articles Next 20 articles >
Categories: Computer Science: Quantum Computers, Ecology: Extinction
Published Tunneling electrons



By superimposing two laser fields of different strengths and frequency, the electron emission of metals can be measured and controlled precisely to a few attoseconds. Physicists have shown that this is the case. The findings could lead to new quantum-mechanical insights and enable electronic circuits that are a million times faster than today.
Published Prehistoric scat reveals 'Waves' of extinction in Colombia



Fungal spores found in dung have revealed that large animals went extinct in two 'waves' in the Colombian Andes.
Published Scientists have full state of a quantum liquid down cold



A team of physicists has illuminated certain properties of quantum systems by observing how their fluctuations spread over time. The research offers an intricate understanding of a complex phenomenon that is foundational to quantum computing.
Published Neuroptera: Greater insect diversity in the Cretaceous period



An LMU team has studied the biodiversity of larvae from the insect order neuroptera over the past 100 million years.
Published Cheetahs need more space: Reintroduction in India must consider their spatial ecology



In autumn 2022 and winter 2023, a total of 20 cheetahs from Namibia and South Africa were introduced to Kuno National Park in India to establish a free-ranging population -- for the first time since their extinction in India 70 years ago. Although the idea may be commendable, getting it right is not so easy. Scientists see shortcomings in the reintroduction plan: In southern Africa, cheetahs live in a stable socio-spatial system with widely spread territories and densities of less than one individual per 100 km².
Published The climate crisis and biodiversity crisis can't be approached as two separate things



Anthropogenic climate change has, together with the intensive use and destruction of natural ecosystems through agriculture, fishing and industry, sparked an unprecedented loss of biodiversity that continues to worsen. In this regard, the climate crisis and biodiversity crisis are often viewed as two separate catastrophes. An international team of researchers calls for adopting a new perspective.
Published Quantum entanglement could make accelerometers and dark matter sensors more accurate



The 'spooky action at a distance' that once unnerved Einstein may be on its way to being as pedestrian as the gyroscopes that currently measure acceleration in smartphones.
Published Two qudits fully entangled



Recently quantum computers started to work with more than just the zeros and ones we know from classical computers. Now a team demonstrates a way to efficiently create entanglement of such high-dimensional systems to enable more powerful calculations.
Published African penguins: Climate refugees from a distant past?



Imagine the view from the western coastline of southern Africa during the Last Glacial Maximum (LGM) over twenty thousand years ago: in the distance you would see at least fifteen large islands -- the largest 300 square kilometers in area -- swarming with hundreds of millions of marine birds and penguin colonies.
Published Quantum computer applied to chemistry



There are high expectations that quantum computers may deliver revolutionary new possibilities for simulating chemical processes. This could have a major impact on everything from the development of new pharmaceuticals to new materials. Researchers have now used a quantum computer to undertake calculations within a real-life case in chemistry.
Published Embracing variations: Physicists analyze noise in Lambda-type quantum memory



In the future, communications networks and computers will use information stored in objects governed by the microscopic laws of quantum mechanics. This capability can potentially underpin communication with greatly enhanced security and computers with unprecedented power. A vital component of these technologies will be memory devices capable of storing quantum information to be retrieved at will.
Published Rock, paper, scissors: Searching for stronger nonlocality using quantum computers



In the quantum world particles can instantaneously know about each other's state, even when separated by large distances. This is known as nonlocality. Now, A research group has produced some interesting findings on the Hardy nonlocality that have important ramifications for understanding quantum mechanics and its potential applications in communications.
Published Long-distance quantum teleportation enabled by multiplexed quantum memories



Researchers report having achieved quantum teleportation from a photon to a solid-state qubit over a distance of 1km, with a novel approach using multiplexed quantum memories.
Published A team creates 'quantum composites' for various electrical and optical innovations



A team has shown in the laboratory the unique and practical function of newly created materials, which they called quantum composites, that may advance electrical, optical, and computer technologies.
Published The diversity of present tree species is shaped by climate change in the last 21,000 years



A new global survey of 1000 forest areas shows how climate change since the peak of the last ice age has had a major impact on the diversity and distribution of tree species we see today. The results can help us predict how ecosystems will react to future changes, thus having an impact on conservation management around the globe.
Published Quantum liquid becomes solid when heated



Solids can be melted by heating, but in the quantum world it can also be the other way around: An experimental team has shown how a quantum liquid forms supersolid structures by heating. The scientists obtained a first phase diagram for a supersolid at finite temperature.
Published Swimming secrets of prehistoric reptiles unlocked by new study



The diverse swimming techniques of the ancient reptiles that ruled the Mesozoic seas have been revealed.
Published Learning about what happens to ecology, evolution, and biodiversity in times of mass extinction



Studying mass extinction events from the past can build our understanding of how ecosystems and the communities of organisms within them respond. Researchers are looking to the Late Devonian mass extinction which happened around 370 million years ago to better understand how communities of organisms respond in times of great upheaval.
Published Laser light hybrids control giant currents at ultrafast times



The flow of matter, from macroscopic water currents to the microscopic flow of electric charge, underpins much of the infrastructure of modern times. In the search for breakthroughs in energy efficiency, data storage capacity, and processing speed, scientists search for ways in which to control the flow of quantum aspects of matter such as the 'spin' of an electron -- its magnetic moment -- or its 'valley state', a novel quantum aspect of matter found in many two dimensional materials. A team of researchers has recently discovered a route to induce and control the flow of spin and valley currents at ultrafast times with specially designed laser pulses, offering a new perspective on the ongoing search for the next generation of information technologies.
Published British flower study reveals surprise about plants' sex life



A study of Britain's native flowering plants has led to new insights into the mysterious process that allows wild plants to breed across species -- one of plants' most powerful evolutionary forces. When wild flowering plants are sizing up others they may often end up in a marriage between close relatives rather than neighbors, a new study has revealed.