Showing 20 articles starting at article 561
< Previous 20 articles Next 20 articles >
Categories: Ecology: Extinction, Space: Astrophysics
Published Slow growth in crocodile ancestors pre-dated their semi-aquatic lifestyle



A groundbreaking study is reshaping our understanding of crocodile evolution by pinpointing the onset of slow growth rates to the Late Triassic period, much earlier than the previously assumed Early Jurassic timeline. The research highlights newly discovered fossil crocodile ancestors (known as crocodylomorphs) that exhibited slow growth rates, similar to modern-day crocodilians. Intriguingly, these early crocodylomorphs were not the lethargic, semi-aquatic creatures we are familiar with today; they were small, active, and fully terrestrial. The study also suggests that this slow-growth strategy was not a mere evolutionary quirk but a survival mechanism, as only the slow-growing crocodylomorphs managed to survive the End-Triassic mass extinction. This stands in stark contrast to the fast-growing dinosaurs of the same era, setting the stage for the divergent evolutionary paths that would later define their modern descendants.
Published Black holes eat faster than previously expected


While previous researchers have hypothesized that black holes eat slowly, new simulations indicate that black holes scarf food much faster than conventional understanding suggests. Some quasars brighten and disappear within months -- a time scale that aligns with the new findings.
Published Researchers issue urgent call to save the world's largest flower -Rafflesia -- from extinction



A new study finds that most Rafflesia species, which produce the world's largest flowers, face extinction. Lack of protection at local, national, and international levels means that remaining populations are under critical threat.
Published Researchers discover a new species of larger benthic foraminifer from the Ryukyu Islands



An international group of researchers have discovered a previously unknown species of large foraminifer, shedding new light on the ecological evolution and biodiversity of coral reefs in the Ryukyu Islands.
Published RNA for the first time recovered from an extinct species



A new study shows the isolation and sequencing of more than a century-old RNA molecules from a Tasmanian tiger specimen preserved at room temperature in a museum collection. This resulted in the reconstruction of skin and skeletal muscle transcriptomes from an extinct species for the first time. The researchers note that their findings have relevant implications for international efforts to resurrect extinct species, including both the Tasmanian tiger and the woolly mammoth, as well as for studying pandemic RNA viruses.
Published The pace of climate-driven extinction is accelerating



Studying a lizard species in Arizona mountains, researchers found 70 years' worth of climate-related extinction occurred in only seven years.
Published Almost half of koala habitats will be under high bushfire threat by 2070


The research team generated a series of fire susceptibility maps. These show the proportion of Australia experiencing 'high' or 'very high' fire susceptibility increasing from 14.9% now to 15.66% by 2070 -- while fire susceptibility of areas suitable for the plants that koalas depend on is tipped to jump from 39.56% to 44.61% by 2070.
Published Groundbreaking research shows that the limits of nuclear stability change in stellar environments where temperatures reach billions of degrees Celsius



New research is challenging the scientific status quo on the limits of the nuclear chart in hot stellar environments where temperatures reach billions of degrees Celsius.
Published Brilliant galaxies of early universe


Scientists have used data from the James Webb Space Telescope (JWST) as part of the Cosmic Evolution Early Release Science (CEERS) Survey to change the way we think about the universe and its distant galaxies. Astronomers authored a paper confirming very bright galaxies in the early universe, while also disproving the identification of what would have been the most distant galaxy ever found.
Published Study shows replanting logged forests with diverse mixtures of seedlings accelerates restoration


• Twenty-year experiment finds that active replanting beats natural recovery for restoring logged tropical forests. • The higher the diversity of replanted tree species, the more quickly canopy area and biomass recovered. • Results emphasize the importance of preserving biodiversity in pristine forests and restoring it in recovering logged forest.
Published Snaps supersonic outflow of young star


Herbig-Haro (HH) objects are luminous regions surrounding newborn stars, formed when stellar winds or jets of gas spewing from these newborn stars form shock waves colliding with nearby gas and dust at high speeds. This image of HH 211 from NASA's James Webb Space Telescope reveals an outflow from a Class 0 protostar, an infantile analog of our Sun when it was no more than a few tens of thousands of years old and with a mass only 8% of the present-day Sun (it will eventually grow into a star like the Sun).
Published Carbon atoms coming together in space



Lab-based studies reveal how carbon atoms diffuse on the surface of interstellar ice grains to form complex organic compounds, crucial to reveal the chemical complexity in the universe.
Published Electrons from Earth may be forming water on the Moon


Planetary scientists have discovered that high energy electrons in Earth's plasma sheet are contributing to weathering processes on the Moon's surface and, importantly, the electrons may have aided the formation of water on the lunar surface.
Published Protected nature reserves alone are insufficient for reversing biodiversity loss



Protected nature areas are considered fundamental for maintaining biodiversity and countering its loss. But how effectively do established protected areas work and prevent negative trends? Research shows mixed effects of protected areas on various species.
Published Matter comprises of 31% of the total amount of matter and energy in the universe


One of the most interesting and important questions in cosmology is, 'How much matter exists in the universe?' An international team has now succeeded in measuring the total amount of matter for the second time. The team determined that matter makes up 31% of the total amount of matter and energy in the universe, with the remainder consisting of dark energy.
Published Freshwater connectivity can transport environmental DNA through the landscape


A new article uses environmental DNA (eDNA) metabarcoding to analyze fish and zooplankton communities. The study found that the movement of water between freshwater bodies, or freshwater connectivity, can transport eDNA. This highlights the potential of eDNA to provide a comprehensive view of freshwater biodiversity.
Published Discovery of two potential Polar Ring galaxies suggests these stunning rare clusters might be more common than previously believed


These new detections suggest polar ring galaxies might be more common than previously believed.
Published Nature's great survivors: Flowering plants survived the mass extinction that killed the dinosaurs



A new study by researchers from the University of Bath (UK) and Universidad Nacional Autónoma de México (Mexico) shows that flowering plants escaped relatively unscathed from the mass extinction that killed the dinosaurs 66 million years ago. Whilst they suffered some species loss, the devastating event helped flowering plants become the dominant type of plant today.
Published Dark matter halos measured around ancient quasars


At the center of every galaxy is a supermassive black hole. Beyond a certain size, these become active, emitting huge amounts of radiation, and are then called quasars. It is thought these are activated by the presence of massive dark matter halos (DMH) surrounding the galaxy, directing matter towards the center, feeding the black hole. A team has now surveyed hundreds of ancient quasars and found this behavior is very consistent throughout history. This is surprising, as many large-scale processes show variation throughout the life of the universe, so the mechanism of quasar activation could have implications for the evolution of the entire universe.
Published The universe caught suppressing cosmic structure growth


As the universe evolves, scientists expect large cosmic structures to grow at a certain rate: dense regions such as galaxy clusters would grow denser, while the void of space would grow emptier.