Showing 20 articles starting at article 41

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Ecology: Trees

Return to the site home page

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General Physics: Optics
Published

New technology uses light to engrave erasable 3D images      (via sciencedaily.com)     Original source 

Researchers invented a technique that uses a specialized light projector and a photosensitive chemical additive to imprint two- and three-dimensional images inside any polymer. The light-based engraving remains in the polymer until heat or light are applied, which erases the image and makes it ready to use again. The technology is intended for any situation where having detailed, precise visual data in a compact and easily customizable format could be critical, such as planning surgeries and developing architectural designs.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Finding pearls in the mud: Eco-friendly tungsten recovery from semiconductor waste      (via sciencedaily.com)     Original source 

Semiconductor industry waste is typically seen as a costly disposal problem and an environmental hazard. But what if this waste could be transformed into a valuable resource? In an exciting development, researchers have unveiled an eco-friendly method to extract rare metals from semiconductor waste. This innovative approach not only recovers precious tungsten but also assesses its economic viability, offering a sustainable solution for waste management in the tech industry.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Chemists develop new sustainable reaction for creating unique molecular building blocks      (via sciencedaily.com)     Original source 

Polymers can be thought of like trains: Just as a train is composed of multiple cars, polymers are made up of multiple monomers, and the couplings between the train cars are similar to the chemical bonds that link monomers together. While polymers have myriad applications -- from drug delivery to construction materials -- their structures and functions are restricted by the chemically similar monomer building blocks they're composed of. Now, chemists have developed a new reaction to create unique monomers in a controlled way. This reaction, which uses nickel as a catalyst, ultimately enables scientists to create polymers with unique and modifiable properties for drug delivery, energy storage, microelectronics and more.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Breakthrough in molecular control: New bioinspired double helix with switchable chirality      (via sciencedaily.com)     Original source 

The control of artificial double-helical structures, which are essential for the development of high-order molecular systems, remains difficult. In a new study, researchers have developed novel double-helical monometallofoldamers that exhibit controllable helicity inversion and chiral information transfer, in response to external stimuli. These monometallofoldamers can lead to novel artificial supramolecular systems for molecular information transmission, amplification, replication, and other exciting applications in various fields of technology.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Environmental: Water Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Forever chemical pollution can now be tracked      (via sciencedaily.com)     Original source 

Researchers developed a way to fingerprint organofluorine compounds -- sometimes called 'forever chemicals' --which could help authorities trace them to their source when they end up in aquifers, waterways or soil.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Advanced chelators offer efficient and eco-friendly rare earth element recovery      (via sciencedaily.com)     Original source 

The world is going to need a lot of weird metals in the coming years, according to chemistry professor. But he isn't talking about lithium, cobalt or even beryllium. He's interested in dysprosium, which is so hidden in the periodic table that you'd be forgiven for thinking he made it up.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology
Published

Concept for efficiency-enhanced noble-metal catalysts      (via sciencedaily.com)     Original source 

The production of more than 90 percent of all chemical products we use in our everyday lives relies on catalysts. Catalysts speed up chemical reactions, can reduce the energy required for these processes, and in some cases, reactions would not be possible at all without catalysts. Researchers developed a concept that increases the stability of noble-metal catalysts and requires less noble metal for their production.

Biology: Zoology Ecology: Nature Ecology: Trees Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

New research sheds light on relationships between plants and insects in forest ecosystems      (via sciencedaily.com)     Original source 

Researchers have published new findings on how leaf-eating insects affect forest ecosystems worldwide. Researchers are aware of how large herbivores cycle nutrients in forests. They know much less, however, about how leaf-eating insects impact forest carbon and nutrient cycling.

Chemistry: Inorganic Chemistry Energy: Technology
Published

Solving the doping problem: Enhancing performance in organic semiconductors      (via sciencedaily.com)     Original source 

Physicists have discovered two new ways to improve organic semiconductors. They found a way to remove more electrons from the material than previously possible and used unexpected properties in an environment known as the non-equilibrium state, boosting its performance for use in electronic devices.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry
Published

Sustainable catalysts: Crystal phase-controlled cobalt nanoparticles for hydrogenation      (via sciencedaily.com)     Original source 

Controlling the crystal phase of cobalt nanoparticles leads to exceptional catalytic performance in hydrogenation processes, scientists report. Produced via an innovative hydrosilane-assisted synthesis method, these phase-controlled reusable nanoparticles enable the selective hydrogenation of various compounds under mild conditions without the use of harmful gases like ammonia. These efforts could lead to more sustainable and efficient catalytic processes across many industrial fields.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

The next generation of RNA chips      (via sciencedaily.com)     Original source 

An international research team has succeeded in developing a new version of RNA building blocks with higher chemical reactivity and photosensitivity. This can significantly reduce the production time of RNA chips used in biotechnological and medical research. The chemical synthesis of these chips is now twice as fast and seven times more efficient.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Physics: Optics
Published

More electricity from the sun      (via sciencedaily.com)     Original source 

A coating of solar cells with special organic molecules could pave the way for a new generation of solar panels. This coating can increase the efficiency of monolithic tandem cells made of silicon and perovskite while lowering their cost -- because they are produced from industrial, microstructured, standard silicon wafers.

Biology: Biochemistry Biology: Botany Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Microbiology Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Ecosystems
Published

Scientists discover entirely new wood type that could be highly efficient at carbon storage      (via sciencedaily.com)     Original source 

Researchers undertaking an evolutionary survey of the microscopic structure of wood from some of the world's most iconic trees and shrubs have discovered an entirely new type of wood.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Researchers identify unique phenomenon in Kagome metal      (via sciencedaily.com)     Original source 

A new study focuses on how a particular Kagome metal interacts with light to generate what are known as plasmon polaritons -- nanoscale-level linked waves of electrons and electromagnetic fields in a material, typically caused by light or other electromagnetic waves.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: General Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Environmental: General Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Organic nanozymes have broad applications from food and agriculture to biomedicine      (via sciencedaily.com)     Original source 

Nanozymes are tiny, engineered substances that mimic the catalytic properties of natural enzymes, and they serve a variety of purposes in biomedicine, chemical engineering, and environmental applications. They are typically made from inorganic materials, including metal-based elements, which makes them unsuitable for many purposes due to their toxicity and high production costs. Organic-based nanozymes partially overcome some of these problems and have the potential for a broader range of applications, including food and agriculture, but they are still in the early stages of development. A new paper provides an overview of the current state of organic nanozymes and their future potential.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Environmental: Water Geoscience: Environmental Issues
Published

Plant-inspired polymers for water purification      (via sciencedaily.com)     Original source 

Researchers have synthesized a bio-inspired polymer for water purification. The polymer was designed to mimic phytochelatin, a plant protein that selectively captures and neutralizes harmful heavy metal ions. The hyperconfinement of the polymer enabled a flow-through system and effectively removed cadmium ions from contaminated water, making it safe to drink. The system was selective for heavy metals and provides a new way to remove specific contaminants from water.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Pioneering measurement of the acidity of ionic liquids using Raman spectroscopy      (via sciencedaily.com)     Original source 

A study has made it possible to estimate experimentally the energy required to transfer protons from water to ionic liquids.

Anthropology: General Biology: Cell Biology Biology: Evolutionary Biology: Zoology Ecology: Extinction Ecology: Nature Ecology: Trees Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Early Mammals and Birds Paleontology: General
Published

The ancestor of all modern birds probably had iridescent feathers      (via sciencedaily.com)     Original source 

Birds tend to be more colorful in the tropics, and scientists wanted to find out how they got there: if colorful feathers evolved in the tropics, or if tropical birds have brightly-colored ancestors that came to the region from somwhere else. Scientists built a database of 9,409 birds to explore the spread of color across the globe. They found that iridescent, colorful feathers originated 415 times across the bird tree of life, and in most cases, arose outside of the tropics -- and that the ancestor of all modern birds likely had iridescent feathers, too.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

'Miracle' filter turns store-bought LEDs into spintronic devices      (via sciencedaily.com)     Original source 

Scientists transformed existing optoelectronic devices into ones that can control electron spin at room temperature, without a ferromagnet or magnetic field. Researchers replaced the electrodes of store-bought LEDs with a patented spin filter made from hybrid organic-inorganic halide perovskite.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Energy: Alternative Fuels Energy: Technology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Offbeat: Earth and Climate Offbeat: General
Published

A recipe for zero-emissions fuel: Soda cans, seawater, and caffeine      (via sciencedaily.com)     Original source 

Engineers discovered that when the aluminum in soda cans is purified and mixed with seawater, the solution produces hydrogen -- which can power an engine or fuel cell without generating carbon emissions. The reaction can be sped up by adding caffeine.