Showing 20 articles starting at article 721
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: Trees
Published For experimental physicists, quantum frustration leads to fundamental discovery



A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.
Published A baking soda solution for clean hydrogen storage



Scientists investigate the promising properties of a common, Earth-abundant salt.
Published A novel, completely solid, rechargeable air battery



Solid-state batteries use solid electrodes and solid electrolytes, unlike the more commonly known lithium-ion batteries, which use liquid electrolytes. Solid-state batteries overcome various challenges associated with liquid-based batteries, such as flammability, limited voltage, unstable reactants, and poor long-term cyclability and strength. Making advances in this field, researchers recently demonstrated an all-solid-state rechargeable air battery composed of a redox-active organic negative electrode and a proton-conductive polymer electrolyte.
Published New material transforms light, creating new possibilities for sensors



A new class of materials that can absorb low energy light and transform it into higher energy light might lead to more efficient solar panels, more accurate medical imaging and better night vision goggles.
Published Breaking through the limits of stretchable semiconductors with molecular brakes that harness light



A research team develops a highly stretchable and high-performance organic polymer semiconductor.
Published Mirror, mirror on the wall... Now we know there are chiral phonons for sure



New findings settle the dispute: phonons can be chiral. This fundamental concept, discovered using circular X-ray light, sees phonons twisting like a corkscrew through quartz.
Published Sustainable technique to manufacture chemicals



A newly published study details a novel mechanochemistry method that can produce chemicals using less energy and without the use of solvents that produce toxic waste.
Published Breakthrough: Scientists develop artificial molecules that behave like real ones



Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.
Published Physicists discover an exotic material made of bosons



Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.
Published Calculation shows why heavy quarks get caught up in the flow



Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.
Published Water molecules define the materials around us



A new paper argues that materials like wood, bacteria, and fungi belong to a newly identified class of matter, 'hydration solids.' The new findings emerged from ongoing research into the strange behavior of spores, dormant bacterial cells.
Published More complex than expected: Catalysis under the microscope



Usually, catalytic reactions are analyzed by checking which chemicals go into a chemical reactor and which come out. But as it turns out, in order to properly understand and optimize catalysts, much more information is necessary. Scientists developed methods to watch catalytic reactions with micrometer resolution under the microscope -- and the process is much more complex than previously thought.
Published Older trees accumulate more mutations than their younger counterparts



A study of the relationship between the growth rate of tropical trees and the frequency of genetic mutations they accumulate suggests that older, long-lived trees play a greater role in generating and maintaining genetic diversity than short-lived trees.
Published The problems with coal ash start smaller than anyone thought



Burning coal doesn't only pollute the air. The resulting ash can leach toxic chemicals into the local environments where it's kept. New research shows that the toxicity of various ash stockpiles relies heavily on its nanoscale structures, which vary widely between sources. The results will help researchers predict which coal ash is most environmentally dangerous.
Published The other side of the story: How evolution impacts the environment



Researchers show that an evolutionary change in the length of lizards' legs can have a significant impact on vegetation growth and spider populations on small islands in the Bahamas. This is one of the first times, the researchers say, that such dramatic evolution-to-environment effects have been documented in a natural setting.
Published Buckle up! A new class of materials is here



Would you rather run into a brick wall or into a mattress? For most people, the choice is not difficult. A brick wall is stiff and does not absorb shocks or vibrations well; a mattress is soft and is a good shock absorber. Sometimes, in designing materials, both of these properties are needed. Materials should be good at absorbing vibrations, but should be stiff enough to not collapse under pressure. A team of researchers from the UvA Institute of Physics has now found a way to design materials that manage to do both these things.
Published Finally solved! The great mystery of quantized vortex motion



Scientists investigated numerically the interaction between a quantized vortex and a normal-fluid. Based on the experimental results, researchers decided the most consistent of several theoretical models. They found that a model that accounts for changes in the normal-fluid and incorporates more theoretically accurate mutual friction is the most compatible with the experimental results.
Published Flat fullerene fragments attractive to electrons



Researchers have gained new insights into the unique chemical properties of spherical molecules composed entirely of carbon atoms, called fullerenes. They did it by making flat fragments of the molecules, which surprisingly retained and even enhanced some key chemical properties.
Published Producing large, clean 2D materials made easy



An international team of surface scientists has now developed a simple method to produce large and very clean 2D samples from a range of materials using three different substrates.
Published Researchers finds a way to reduce the overheating of semiconductor devices



Scientists have identified a method for improving the thermal conductivity of thin metal films in semiconductors using surface waves for the first time in the world.