Showing 20 articles starting at article 721

< Previous 20 articles        Next 20 articles >

Categories: Chemistry: Inorganic Chemistry, Ecology: Trees

Return to the site home page

Chemistry: Inorganic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

For experimental physicists, quantum frustration leads to fundamental discovery      (via sciencedaily.com)     Original source 

A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Batteries
Published

A novel, completely solid, rechargeable air battery      (via sciencedaily.com)     Original source 

Solid-state batteries use solid electrodes and solid electrolytes, unlike the more commonly known lithium-ion batteries, which use liquid electrolytes. Solid-state batteries overcome various challenges associated with liquid-based batteries, such as flammability, limited voltage, unstable reactants, and poor long-term cyclability and strength. Making advances in this field, researchers recently demonstrated an all-solid-state rechargeable air battery composed of a redox-active organic negative electrode and a proton-conductive polymer electrolyte.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Energy: Alternative Fuels Engineering: Nanotechnology Physics: Optics
Published

New material transforms light, creating new possibilities for sensors      (via sciencedaily.com)     Original source 

A new class of materials that can absorb low energy light and transform it into higher energy light might lead to more efficient solar panels, more accurate medical imaging and better night vision goggles.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics
Published

Mirror, mirror on the wall... Now we know there are chiral phonons for sure      (via sciencedaily.com)     Original source 

New findings settle the dispute: phonons can be chiral. This fundamental concept, discovered using circular X-ray light, sees phonons twisting like a corkscrew through quartz.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Chemistry: Thermodynamics
Published

Sustainable technique to manufacture chemicals      (via sciencedaily.com)     Original source 

A newly published study details a novel mechanochemistry method that can produce chemicals using less energy and without the use of solvents that produce toxic waste.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Breakthrough: Scientists develop artificial molecules that behave like real ones      (via sciencedaily.com)     Original source 

Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Physics: General Physics: Quantum Physics
Published

Physicists discover an exotic material made of bosons      (via sciencedaily.com)     Original source 

Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Calculation shows why heavy quarks get caught up in the flow      (via sciencedaily.com)     Original source 

Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

More complex than expected: Catalysis under the microscope      (via sciencedaily.com)     Original source 

Usually, catalytic reactions are analyzed by checking which chemicals go into a chemical reactor and which come out. But as it turns out, in order to properly understand and optimize catalysts, much more information is necessary. Scientists developed methods to watch catalytic reactions with micrometer resolution under the microscope -- and the process is much more complex than previously thought.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

Older trees accumulate more mutations than their younger counterparts      (via sciencedaily.com)     Original source 

A study of the relationship between the growth rate of tropical trees and the frequency of genetic mutations they accumulate suggests that older, long-lived trees play a greater role in generating and maintaining genetic diversity than short-lived trees.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Physics: General
Published

The problems with coal ash start smaller than anyone thought      (via sciencedaily.com)     Original source 

Burning coal doesn't only pollute the air. The resulting ash can leach toxic chemicals into the local environments where it's kept. New research shows that the toxicity of various ash stockpiles relies heavily on its nanoscale structures, which vary widely between sources. The results will help researchers predict which coal ash is most environmentally dangerous.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Ecology: Animals Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees
Published

The other side of the story: How evolution impacts the environment      (via sciencedaily.com)     Original source 

Researchers show that an evolutionary change in the length of lizards' legs can have a significant impact on vegetation growth and spider populations on small islands in the Bahamas. This is one of the first times, the researchers say, that such dramatic evolution-to-environment effects have been documented in a natural setting.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Offbeat: General Physics: Optics
Published

Buckle up! A new class of materials is here      (via sciencedaily.com)     Original source 

Would you rather run into a brick wall or into a mattress? For most people, the choice is not difficult. A brick wall is stiff and does not absorb shocks or vibrations well; a mattress is soft and is a good shock absorber. Sometimes, in designing materials, both of these properties are needed. Materials should be good at absorbing vibrations, but should be stiff enough to not collapse under pressure. A team of researchers from the UvA Institute of Physics has now found a way to design materials that manage to do both these things.

Chemistry: Inorganic Chemistry Mathematics: Modeling Physics: General Physics: Quantum Physics
Published

Finally solved! The great mystery of quantized vortex motion      (via sciencedaily.com)     Original source 

Scientists investigated numerically the interaction between a quantized vortex and a normal-fluid. Based on the experimental results, researchers decided the most consistent of several theoretical models. They found that a model that accounts for changes in the normal-fluid and incorporates more theoretically accurate mutual friction is the most compatible with the experimental results.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: Optics
Published

Flat fullerene fragments attractive to electrons      (via sciencedaily.com)     Original source 

Researchers have gained new insights into the unique chemical properties of spherical molecules composed entirely of carbon atoms, called fullerenes. They did it by making flat fragments of the molecules, which surprisingly retained and even enhanced some key chemical properties.

Chemistry: Inorganic Chemistry Engineering: Graphene
Published

Producing large, clean 2D materials made easy      (via sciencedaily.com)     Original source 

An international team of surface scientists has now developed a simple method to produce large and very clean 2D samples from a range of materials using three different substrates.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Engineering: Nanotechnology Physics: General
Published

Researchers finds a way to reduce the overheating of semiconductor devices      (via sciencedaily.com)     Original source 

Scientists have identified a method for improving the thermal conductivity of thin metal films in semiconductors using surface waves for the first time in the world.