Showing 20 articles starting at article 61
< Previous 20 articles Next 20 articles >
Categories: Ecology: Trees, Physics: Quantum Physics
Published Study examines tree adaptability to climate change



Many trees could expand their ranges by more than 25 percent based on their potential temperature tolerances.
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published First local extinction in the US due to sea level rise, study suggests



The United States has lost its only stand of the massive Key Largo tree cactus in what researchers believe is the first local extinction of a species caused by sea level rise in the country.
Published Genomic data integration improves prediction accuracy of apple fruit traits



Genotyping techniques can be used to select fruit trees with desired traits at the seedling stage, increasing the efficiency of fruit tree breeding. However, so far, there are multiple different genotyping systems, each generating distinct datasets. In a recent study, Japanese scientists revealed that integrating genomic data obtained with different genotyping systems can effectively combine with historical data, leveraging the accuracy of genomic predictions.
Published A 2D device for quantum cooling



Engineers have created a device that can efficiently convert heat into electrical voltage at temperatures lower than that of outer space. The innovation could help overcome a significant obstacle to the advancement of quantum computing technologies, which require extremely low temperatures to function optimally.
Published A genetic algorithm for phononic crystals



Researchers tested phononic nanomaterials designed with an automated genetic algorithm that responded to light pulses with controlled vibrations. This work may help in the development of next-generation sensors and computer devices.
Published Climate change drives tree species towards colder, wetter regions



Climate change is likely to drive tree species towards colder and wetter regions.
Published Giant clams may hold the answers to making solar energy more efficient



Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.
Published Neutrons on classically inexplicable paths



Is nature really as strange as quantum theory says -- or are there simpler explanations? New neutron measurements prove: It doesn't work without the strange properties of quantum theory.
Published Visual explanations of machine learning models to estimate charge states in quantum dots



To form qubit states in semiconductor materials, it requires tuning for numerous parameters. But as the number of qubits increases, the amount of parameters also increases, thereby complicating this process. Now, researchers have automated this process, overcoming a significant barrier to realizing quantum computers.
Published Characterization of the extraordinary thermoelectric properties of cadmium arsenide thin films



If there's one thing we humans are good at, it's producing heat. Significant amounts, and in many cases most of the energy we generate and put into our systems we lose as heat, whether it be our appliances, our transportation, our factories, even our electrical grid.
Published Understanding quantum states: New research shows importance of precise topography in solid neon qubits



A new study shows new insight into the quantum state that describes the condition of electrons on an electron-on-solid-neon quantum bit, information that can help engineers build this innovative technology.
Published A chip-scale Titanium-sapphire laser



With a single leap from tabletop to the microscale, engineers have produced the world's first practical Titanium-sapphire laser on a chip, democratizing a once-exclusive technology.
Published Precision instrument bolsters efforts to find elusive dark energy



Dark energy -- a mysterious force pushing the universe apart at an ever-increasing rate -- was discovered 26 years ago, and ever since, scientists have been searching for a new and exotic particle causing the expansion. Physicists combined an optical lattice with an atom interferometer to hold atoms in place for up to 70 seconds -- a record for an atom interferometer -- allowing them to more precisely test for deviations from the accepted theory of gravity that could be caused by dark energy particles such as chameleons or symmetrons. Though they detected no anomalies, they're improving the experiment to perform more sensitive tests of gravity, including whether gravity is quantized.
Published Researchers discover new flat electronic bands, paving way for advanced quantum materials



Scientists predict the existence of flat electronic bands at the Fermi level, a finding that could enable new forms of quantum computing and electronic devices.
Published Fuel treatments reduce future wildfire severity



There is a common belief that prescribed burning, thinning trees, and clearing underbrush reduce risks of the severity of future fires. But is that true? A new project analyzing 40 studies where wildfire burned into different vegetation treatments, spanning 11 western states. Researchers found overwhelming evidence that in seasonally dry mixed conifer forests in the western U.S., reducing surface and ladder fuels and tree density through thinning, coupled with prescribed burning or pile burning, could reduce future wildfire severity by more than 60% relative to untreated areas.
Published New tomato, potato family tree shows that fruit color and size evolved together



A new family tree of the plant genus Solanum helps explain the striking diversity of their fruit color and size. This genus includes tomatoes, potatoes, eggplants, and other economically important plants.
Published Wild chimpanzees seek out medicinal plants to treat illness and injuries



Chimpanzees appear to consume plants with medicinal properties to treat their ailments, according to a new study.
Published New NOvA results add to mystery of neutrinos



The international collaboration presented their first results with new data in four years, featuring a new low-energy sample of electron neutrinos and a dataset doubled in size.
Published Wooden surfaces may have natural antiviral properties



Viruses, including the coronavirus that causes COVID-19, can get passed from person to person via contaminated surfaces. But can some surfaces reduce the risk of this type of transmission without the help of household disinfectants? Wood has natural antiviral properties that can reduce the time viruses persist on its surface -- and some species of wood are more effective than others at reducing infectivity.