Showing 20 articles starting at article 201

< Previous 20 articles        Next 20 articles >

Categories: Ecology: Trees, Physics: Optics

Return to the site home page

Physics: General Physics: Optics
Published

Superradiant atoms could push the boundaries of how precisely time can be measured      (via sciencedaily.com)     Original source 

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers present a new method for measuring the time interval, the second, mitigating some of the limitations that today's most advanced atomic clocks encounter. The result could have broad implications in areas such as space travel, volcanic eruptions and GPS systems.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Compact quantum light processing      (via sciencedaily.com)     Original source 

An international collaboration of researchers has achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.

Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Geoscience: Geochemistry Physics: General Physics: Optics Physics: Quantum Computing
Published

Energy scientists unravel the mystery of gold's glow      (via sciencedaily.com)     Original source 

EPFL researchers have developed the first comprehensive model of the quantum-mechanical effects behind photoluminescence in thin gold films; a discovery that could drive the development of solar fuels and batteries.

Biology: Cell Biology Biology: General Biology: Microbiology Physics: Optics
Published

A better view with new mid-infrared nanoscopy      (via sciencedaily.com)     Original source 

A team has constructed an improved mid-infrared microscope, enabling them to see the structures inside living bacteria at the nanometer scale. Mid-infrared microscopy is typically limited by its low resolution, especially when compared to other microscopy techniques. This latest development produced images at 120 nanometers, which the researchers say is a thirtyfold improvement on the resolution of typical mid-infrared microscopes. Being able to view samples more clearly at this smaller scale can aid multiple fields of research, including into infectious diseases, and opens the way for developing even more accurate mid-infrared-based imaging in the future.

Physics: General Physics: Optics
Published

Photonic computation with sound waves      (via sciencedaily.com)     Original source 

Optical neural networks may provide the high-speed and large-capacity solution necessary to tackle challenging computing tasks. However, tapping their full potential will require further advances. One challenge is the reconfigurability of optical neural networks. A research team has now succeeded in laying the foundation for new reconfigurable neuromorphic building blocks by adding a new dimension to photonic machine learning: sound waves. The researchers use light to create temporary acoustic waves in an optical fiber. The sound waves generated in this way can for instance enable a recurrent functionality in a telecom optical fiber, which is essential to interpreting contextual information such as language.

Engineering: Graphene Engineering: Nanotechnology Physics: Optics
Published

Quantum electronics: Charge travels like light in bilayer graphene      (via sciencedaily.com)     Original source 

An international research team has demonstrated experimentally that electrons in naturally occurring double-layer graphene move like particles without any mass, in the same way that light travels. Furthermore, they have shown that the current can be 'switched' on and off, which has potential for developing tiny, energy-efficient transistors -- like the light switch in your house but at a nanoscale.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Crucial connection for 'quantum internet' made for the first time      (via sciencedaily.com)     Original source 

Researchers have produced, stored, and retrieved quantum information for the first time, a critical step in quantum networking.

Chemistry: Inorganic Chemistry Physics: Optics
Published

New colorful plastic films for versatile sensors and electronic displays      (via sciencedaily.com)     Original source 

Researchers have synthesized triarylborane (TAB) compounds that exhibit unusual optical responses upon binding to certain anions. They also synthesized thin polymer films that incorporate the TAB and retain the sensing as well as the light emission properties of the TAB. This work is an important advance in plastic research and has applications in analyte sensing as well as electronic display technologies.

Biology: Botany Biology: Zoology Ecology: Animals Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

Tropical forests can't recover naturally without fruit-eating birds      (via sciencedaily.com)     Original source 

Natural forest regeneration is hailed as a cost-effective way to restore biodiversity and sequester carbon. However, the fragmentation of tropical forests has restricted the movement of large birds limiting their capacity to disperse seeds and restore healthy forests.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum breakthrough when light makes materials magnetic      (via sciencedaily.com)     Original source 

The potential of quantum technology is huge but is today largely limited to the extremely cold environments of laboratories. Now, researchers have succeeded in demonstrating for the very first time how laser light can induce quantum behavior at room temperature -- and make non-magnetic materials magnetic. The breakthrough is expected to pave the way for faster and more energy-efficient computers, information transfer and data storage.

Physics: Optics
Published

Breakthrough for next-generation digital displays      (via sciencedaily.com)     Original source 

Researchers have developed a digital display screen where the LEDs themselves react to touch, light, fingerprints and the user's pulse, among other things. Their results could be the start of a whole new generation of displays for phones, computers and tablets.

Chemistry: Biochemistry Physics: Optics
Published

Could new technique for 'curving' light be the secret to improved wireless communication?      (via sciencedaily.com)     Original source 

A study that could help revolutionize wireless communication introduces a novel method to curve terahertz signals around an obstacle.

Energy: Alternative Fuels Energy: Technology Environmental: General Geoscience: Environmental Issues Physics: Optics
Published

New four-terminal tandem organic solar cell achieves 16.94% power conversion efficiency      (via sciencedaily.com)     Original source 

Researchers have fabricated a new four-terminal organic solar cell with a tandem configuration with a 16.94% power conversion efficiency (PCE). The new device is composed by a highly transparent front cell that incorporates a transparent ultrathin silver (Ag) electrode of only 7nm, which ensures its efficient operation.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Microbiology Ecology: Trees Environmental: General Geoscience: Geochemistry
Published

Integrated dataset enables genes-to-ecosystems research      (via sciencedaily.com)     Original source 

A new dataset bridging molecular information about the poplar tree microbiome to ecosystem-level processes has been released. The project aims to inform research regarding how natural systems function, their vulnerability to a changing climate, and ultimately how plants might be engineered for better performance as sources of bioenergy and natural carbon storage.

Chemistry: Biochemistry Physics: Optics
Published

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors      (via sciencedaily.com)     Original source 

Engineers unlock the power of exceptional points (EPs) for advanced optical sensing. EPs -- specific conditions in systems where extraordinary optical phenomena can occur -- can be deployed on conventional sensors to achieve a striking sensitivity to environmental perturbations.

Physics: General Physics: Optics Physics: Quantum Physics
Published

Kerr-enhanced optical spring for next-generation gravitational wave detectors      (via sciencedaily.com)     Original source 

A novel technique for enhancing optical spring that utilizes the Kerr effect to improve the sensitivity of gravitational wave detectors (GWDs) has recently been developed. This innovative design uses optical non-linear effects from the Kerr effect in the Fabry-Perot cavity to achieve high signal amplification ratios and optical spring constant, with potential applications in not only GWDs but also in a range of optomechanical systems.

Biology: Cell Biology Ecology: Trees Environmental: General Geoscience: Earth Science Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Geomagnetic Storms Geoscience: Severe Weather
Published

Tracing the largest solar storm in modern times from tree rings in Lapland      (via sciencedaily.com)     Original source 

A research group was able to measure a spike in radiocarbon concentration of trees in Lapland that occurred after the Carrington flare. This discovery helps to prepare for dangerous solar storms.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Biology: General Biology: Genetics Ecology: Nature Ecology: Trees
Published

New sunflower family tree reveals multiple origins of flower symmetry      (via sciencedaily.com)     Original source 

A new sunflower family tree used skimmed genomes to increase the number of species sampled, revealing that flower symmetry evolved multiple times independently, a process called convergent evolution, among the members of this large plant family.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers visualize quantum effects in electron waves      (via sciencedaily.com)     Original source 

One of the most fundamental interactions in physics is that of electrons and light. In an experiment, scientists have now managed to observe what is known as the Kapitza-Dirac effect for the first time in full temporal resolution. This effect was first postulated over 90 years ago, but only now are its finest details coming to light.