Showing 20 articles starting at article 541
< Previous 20 articles Next 20 articles >
Categories: Ecology: Trees, Physics: Optics
Published Extreme El Niño weather saw South America's forest carbon sink switch off



Tropical forests in South America lose their ability to absorb carbon from the atmosphere when conditions become exceptionally hot and dry, according to new research. For a long time, tropical forests have acted as a carbon sink, taking more carbon out of the air than they release into it, a process that has moderated the impact of climate change. But new research found that in 2015 -- 2016, when an El Niño climate event resulted in drought and the hottest temperatures ever recorded, South American forests were unable to function as a carbon sink.
Published Better cybersecurity with new material


Digital information exchange can be safer, cheaper and more environmentally friendly with the help of a new type of random number generator for encryption. The researchers behind the study believe that the new technology paves the way for a new type of quantum communication.
Published Invasive spotted lanternfly may not damage hardwood trees as previously thought



In 2012, when the spotted lanternfly (Lycorma delicatula) arrived in the U.S. from its home in China, scientists, land managers, and growers were understandably concerned that the sap-feeding insect would damage native and commercial trees. New long-term research has discovered that hardwood trees, such as maple, willow and birch, may be less vulnerable than initially thought.
Published Peering into nanofluidic mysteries one photon at a time



Researchers have revealed an innovative approach to track individual molecule dynamics within nanofluidic structures, illuminating their response to molecules in ways never before possible.
Published Growing triple-decker hybrid crystals for lasers


By controlling the arrangement of multiple inorganic and organic layers within crystals using a novel technique, researchers have shown they can control the energy levels of electrons and holes (positive charge carriers) within a class of materials called perovskites. This tuning influences the materials' optoelectronic properties and their ability to emit light of specific energies, demonstrated by their ability to function as a source of lasers.
Published Researchers develop ultra-sensitive photoacoustic microscopy for wide biomedical application potential


Optical-resolution photoacoustic microscopy is an up-and-coming biomedical imaging technique for studying a broad range of diseases, such as cancer, diabetes and stroke. But its insufficient sensitivity has been a longstanding obstacle for its wider application. Recently, a research team developed a multi-spectral, super-low-dose photoacoustic microscopy system with a significant improvement in the system sensitivity limit, enabling new biomedical applications and clinical translation in the future.
Published A simpler way to connect quantum computers


Researchers have developed a new approach to building quantum repeaters, devices that can link quantum computers over long distances. The new system transmits low-loss signals over optical fiber using light in the telecom band, a longstanding goal in the march toward robust quantum communication networks.
Published Can this forest survive? Predicting forest death or recovery after drought



New work could help forest managers predict which forests are most at risk from drought and which will survive.
Published Vision for future micro-optical technology based on metamaterials


Historically, metasurface research has concentrated on the full manipulation of light's characteristics, resulting in a diverse array of optical devices such as metalenses, metaholograms, and beam diffraction devices. Nevertheless, recent studies have shifted their focus toward integrating metasurfaces with other optical components.
Published Want to fight climate change? Don't poach gorillas (or elephants, hornbills, toucans, etc.)



A new article found that overhunting of gorillas, elephants, and other large fruit-eating seed-dispersers make tropical forests less able to store or sequester carbon.
Published Brighter comb lasers on a chip mean new applications


Researchers have shown that dissipative Kerr solitons (DKSs) can be used to create chip-based optical frequency combs with enough output power for use in optical atomic clocks and other practical applications. The advance could lead to chip-based instruments that can make precision measurements that were previously possible only in a few specialized laboratories.
Published Quantum computer unveils atomic dynamics of light-sensitive molecules


Researchers have implemented a quantum-based method to observe a quantum effect in the way light-absorbing molecules interact with incoming photons. Known as a conical intersection, the effect puts limitations on the paths molecules can take to change between different configurations. The observation method makes use of a quantum simulator, developed from research in quantum computing, and offers an example of how advances in quantum computing are being used to investigate fundamental science.
Published Which radio waves disrupt the magnetic sense in migratory birds?


Many songbirds use the earth's magnetic field as a guide during their migrations, but radiowaves interfere with this ability. A new study has found an upper bound for the frequency that disrupts the magnetic compass.
Published Making the invisible, visible: New method makes mid-infrared light detectable at room temperature


Scientists have developed a new method for detecting mid-infrared (MIR) light at room temperature using quantum systems.
Published Scientists use quantum device to slow down simulated chemical reaction 100 billion times


Using a trapped-ion quantum computer, the research team witnessed the interference pattern of a single atom caused by a 'conical intersection'. Conical intersections are known throughout chemistry and are vital to rapid photo-chemical processes such as light harvesting in human vision or photosynthesis.
Published Scientists invent new way to sort cells by type using light


Researchers have developed and demonstrated a new method for high-throughput single-cell sorting that uses stimulated Raman spectroscopy rather than the traditional approach of fluorescence-activated cell sorting. The new approach could offer a label-free, nondestructive way to sort cells for a variety of applications, including microbiology, cancer detection and cell therapy.
Published Soils forming on the branches of trees are an overlooked forest habitat


A study on 'canopy soils' on old trees in Costa Rica shows they are important habitats and carbon stores that cannot easily be replaced.
Published New quantum device generates single photons and encodes information


A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A team stacked two different, atomically thin materials to realize this chiral quantum light source.
Published Light regulates structural conversion of chiral molecules


A team of chemists have developed a novel concept in which a mixture of molecules that behave like mirror images is converted to a single form. To this end, they use light as external energy source. The conversion is relevant e.g. for the preparation of drugs.
Published Deforestation limits nesting habitat for cavity-nesting birds


A new study of cavity-nesting birds in Ecuador shows the influence of deforestation on their habitat and reproductive success. Nest boxes could help.