Showing 20 articles starting at article 1001

< Previous 20 articles        Next 20 articles >

Categories: Ecology: Animals, Physics: General

Return to the site home page

Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Symmetry breaking by ultrashort light pulses opens new quantum pathways for coherent phonons      (via sciencedaily.com)     Original source 

Researchers have demonstrated a novel concept for exciting and probing coherent phonons in crystals of a transiently broken symmetry. The key of this concept lies in reducing the symmetry of a crystal by appropriate optical excitation, as has been shown with the prototypical crystalline semimetal bismuth (Bi).

Chemistry: Biochemistry Computer Science: Virtual Reality (VR) Offbeat: Computers and Math Offbeat: General Physics: Acoustics and Ultrasound Physics: General Physics: Optics
Published

Source-shifting metastructures composed of only one resin for location camouflaging      (via sciencedaily.com)     Original source 

Acoustic source-shifters make observers mis-perceive the location of sound by reproducing a sound emanating from a location different from the actual location of a sound source. Researchers have now developed a design approach to produce high-performance source-shifters using a common polymer for location camouflage. Utilizing inverse design based on topology optimization, this development could pave the way for advanced augmented reality and holography technology.

Biology: Biochemistry Chemistry: Biochemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

Biological specimens imaged with X-rays without damage      (via sciencedaily.com)     Original source 

Scientists have managed to image delicate biological structures without damaging them. Their new technique generates high resolution X-ray images of dried biological material that has not been frozen, coated, or otherwise altered beforehand -- all with little to no damage to the sample. This method, which is also used for airport baggage scanning, can generate images of the material at nanometer resolution.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics
Published

Absolute vs. relative efficiency: How efficient are blue LEDs, actually?      (via sciencedaily.com)     Original source 

The absolute internal quantum efficiency (IQE) of indium gallium nitride (InGaN) based blue light-emitting diodes (LEDs) at low temperatures is often assumed to be 100%. However, a new study has found that the assumption of always perfect IQE is wrong: the IQE of an LED can be as low as 27.5%.

Computer Science: Artificial Intelligence (AI) Engineering: Robotics Research Mathematics: Statistics Offbeat: Computers and Math Offbeat: General Physics: General
Published

Effective as a collective: Researchers investigate the swarming behavior of microrobots      (via sciencedaily.com)     Original source 

Miniaturization is progressing rapidly in just any field and the trend towards the creation of ever smaller units is also prevalent in the world of robot technology. In the future, minuscule robots used in medical and pharmaceutical applications might be able to transport medication to targeted sites in the body. Statistical physics can contribute to the foundations for the development of such technologies.

Chemistry: Inorganic Chemistry Physics: General Physics: Optics Physics: Quantum Physics
Published

'A blessing in disguise!' Physics turning bad into good      (via sciencedaily.com)     Original source 

Light is a very delicate and vulnerable property. Light can be absorbed or reflected at the surface of a material depending on the matter's properties or change its form and be converted into thermal energy. Upon reaching a metallic material's surface, light also tends to lose energy to the electrons inside the metal, a broad range of phenomena we call 'optical loss.' Production of ultra-small optical elements that utilize light in various ways is very difficult since the smaller the size of an optical component results in a greater optical loss. However, in recent years, the non-Hermitian theory, which uses optical loss in an entirely different way, has been applied to optics research.

Energy: Technology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Forging a dream material with semiconductor quantum dots      (via sciencedaily.com)     Original source 

Researchers have succeeded in creating a 'superlattice' of semiconductor quantum dots that can behave like a metal, potentially imparting exciting new properties to this popular class of materials.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Ecology: Animals Ecology: Nature Environmental: Biodiversity Geoscience: Earth Science Geoscience: Geology
Published

River erosion can shape fish evolution      (via sciencedaily.com)     Original source 

A new study of the freshwater greenfin darter fish suggests river erosion can be a driver of biodiversity in tectonically inactive regions.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Environmental: General Geoscience: Geochemistry Physics: General Physics: Optics
Published

Twisting under the stroboscope -- Controlling crystal lattices of hybrid solar cell materials with terahertz light      (via sciencedaily.com)     Original source 

To overcome global energy challenges and fight the looming environmental crisis, researchers around the world investigate new materials for converting sunlight into electricity. Some of the most promising candidates for high-efficiency low-cost solar cell applications are based on lead halide perovskite (LHP) semiconductors. Despite record-breaking solar cell prototypes, the microscopic origin of the surprisingly excellent optoelectronic performance of this material class is still not completely understood. Now, an international team of physicists and chemists has demonstrated laser-driven control of fundamental motions of the LHP atomic lattice.

Chemistry: General Chemistry: Inorganic Chemistry Energy: Technology Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Snapshots of photoinjection      (via sciencedaily.com)     Original source 

Ultrafast laser physicists from the attoworld team have gained new insights into the dynamics of electrons in solids immediately after photoinjection.

Energy: Nuclear Physics: General Physics: Optics
Published

Keeping time with an atomic nucleus      (via sciencedaily.com)     Original source 

Nuclear clocks could allow scientists to probe the fundamental forces of the universe in the future. Researchers have made a crucial advance in this area as part of an international collaboration.

Chemistry: Thermodynamics Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum scientists accurately measure power levels one trillion times lower than usual      (via sciencedaily.com)     Original source 

Scientists have developed a nanodevice that can measure the absolute power of microwave radiation down to the femtowatt level at ultra-low temperatures -- a scale trillion times lower than routinely used in verifiable power measurements. The device has the potential to significantly advance microwave measurements in quantum technology.

Biology: Biochemistry Biology: General Ecology: Animals
Published

Most effective ways of foraging can attract predators      (via sciencedaily.com)     Original source 

Animals using the most of efficient methods of searching for resources may well pay with their lives, scientists have discovered.

Biology: Biochemistry Biology: Cell Biology Biology: Evolutionary Biology: General Biology: Marine Ecology: Animals Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Biodiversity Environmental: Ecosystems Geoscience: Geography
Published

Global macrogenetic map of marine habitat-forming species      (via sciencedaily.com)     Original source 

Species known as marine habitat-forming species -- gorgonians, corals, algae, seaweeds, marine phanerogams, etc.-- are organisms that help generate and structure the underwater landscapes. These are natural refuges for other species, and provide biomass and complexity to the seabeds. But these key species in marine ecosystems are currently threatened by climate change and other perturbations derived from human activity. Now, a study warns that even in the marine protected areas (MPAs) the genetic diversity of structural species is not protected, although it is essential for the response and adaptation of populations to changes that alter the natural environment.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Quantum matter breakthrough: Tuning density waves      (via sciencedaily.com)     Original source 

Scientists have found a new way to create a crystalline structure called a 'density wave' in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics.

Biology: Biochemistry Biology: Cell Biology Biology: General Biology: Zoology Ecology: Animals Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Move over, armadillos: There's a new bone-plated mammal in town      (via sciencedaily.com)     Original source 

Armadillos have long been considered to be the only living mammals that produce protective bony plates. But a new study unexpectedly shows that African spiny mice produce the same structures beneath the skin of their tails, which until now had gone largely undetected.

Chemistry: Biochemistry Energy: Batteries Physics: General
Published

Flexing crystalline structures provide path to a solid energy future      (via sciencedaily.com)     Original source 

Researchers have uncovered the atomic mechanisms that make a class of compounds called argyrodites attractive candidates for both solid-state battery electrolytes and thermoelectric energy converters. The discoveries -- and the machine learning approach used to make them -- could help usher in a new era of energy storage for applications such as household battery walls and fast-charging electric vehicles.

Biology: Biochemistry Biology: Botany Biology: General Ecology: Animals Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature
Published

Identifying the bee's knees of bumble bee diets      (via sciencedaily.com)     Original source 

A new study has identified the bee's knees of bumble bee dietary options in Ohio and the Upper Midwest. By viewing almost 23,000 bumble bee-flower interactions over two years, researchers found that these bees don't always settle for the most abundant flowers in their foraging area -- suggesting they have more discerning dietary preferences than one might expect.