Showing 20 articles starting at article 161
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Organic Chemistry, Ecology: Endangered Species
Published Scientists develop most sensitive way to observe single molecules



A technical achievement marks a significant advance in the burgeoning field of observing individual molecules without the aid of fluorescent labels. While these labels are useful in many applications, they alter molecules in ways that can obscure how they naturally interact with one another. The new label-free method makes the molecules so easy to detect, it is almost as if they had labels.
Published New method makes hydrogen from solar power and agricultural waste



Engineers have helped design a new method to make hydrogen gas from water using only solar power and agricultural waste such as manure or husks. The method reduces the energy needed to extract hydrogen from water by 600%, creating new opportunities for sustainable, climate-friendly chemical production.
Published Tracing the evolution of ferns' surprisingly sweet defense strategy



Plants and the animals that eat them have evolved together in fascinating ways, creating a dynamic interplay of survival strategies. Many plants have developed physical and chemical defenses to fend off herbivores. A well-known strategy in flowering plants is to produce nectar to attract 'ant bodyguards.' Recent research explores the evolution of this same defense strategy in ferns.
Published Researchers expose new symbiosis origin theories, identify experimental systems for plant life



Research work on symbiosis -- a mutually beneficial relationship between living organisms -- is pushing back against the newer theory of a 'single-origin' of root nodule symbiosis (RNS) -- that all symbiosis between plant root nodules and nitrogen-fixing bacteria stems from one point--instead suggesting a 'multiple-origin' theory of sybiosis which opens a better understanding for genetically engineering crops.
Published Editing without 'cutting': Molecular mechanisms of new gene-editing tool revealed



New research has determined the spatial structure of various processes of a novel gene-editing tool called 'prime editor.' Functional analysis based on these structures also revealed how a 'prime editor' could achieve reverse transcription, synthesizing DNA from RNA, without 'cutting' both strands of the double helix. Clarifying these molecular mechanisms contributes greatly to designing gene-editing tools accurate enough for gene therapy treatments.
Published Researchers create materials with unique combo of stiffness, thermal insulation



Researchers have demonstrated the ability to engineer materials that are both stiff and capable of insulating against heat. This combination of properties is extremely unusual and holds promise for a range of applications, such as the development of new thermal insulation coatings for electronic devices.
Published What makes some plant groups so successful?



Researchers involved in cataloguing the world's plant species are hunting for answers as to what makes some groups of plants so successful. One of their major goals is to predict more accurately which lineages of flowering plants -- some of which are of huge importance to people and to ecosystems -- are at a greater risk from global climate change.
Published Orchids support seedlings through 'parental nurture' via shared underground fungal networks



Orchid plants nurture their seedlings via an underground fungal network, new research has revealed.
Published Fatal attraction: When endangered species try to mate with domestic relatives, both wildlife and people lose



Sticks and stones aren't enough to thwart biological attraction, but sometimes those are the only tools available to pastoralists trying to prevent wildlife from eloping with their livestock. A new study brings awareness to both the human impacts of these encounters -- ranging from economic loss to death -- and conservation concerns for the wild animals that are often endangered.
Published Solving the problems of proton-conducting perovskites for next-generation fuel cells



As a newly developed perovskite with a large amount of intrinsic oxygen vacancies, BaSc0.8W0.2O2.8 achieves high proton conduction at low and intermediate temperatures, report scientists. By the donor doping of large W6+, this material can take up more water to increase its proton concentration, as well as reduce the proton trapping through electrostatic repulsion between the dopant and proton. These findings could pave the way to the rational design of novel perovskites for protonic ceramic fuel cells (PCFCs) and electrolysis cells (PCECs).
Published Some species may tolerate climate change better than expected



A new model reassesses the proportion of terrestrial and marine species threatened with extinction by climate change. While the forecasts of traditional models estimate that the diversity of terrestrial species in tropical areas could decrease by 54% between now and 2041-2060, this model is more moderate, predicting a decrease of 39%. Nevertheless, this proportion remains alarming and confirms the importance of taking urgent measures to mitigate climate change and its impact on biodiversity.
Published Slugs and snails love the city, unlike other animals



Most native species avoid more urbanized areas of Los Angeles, but slugs and snails may actually prefer these environments, according to a new study.
Published Marine Protected Areas don't line up with core habitats of rare migratory fish, finds new research



62% of Marine Protected Areas (MPAs) designated to protect rare migratory fish species are outside of their core habitats, according to a new modeling study.
Published Scientists identify gene that could lead to resilient 'pixie' corn



A widely found gene in plants has been newly identified as a key transporter of a hormone that influences the size of corn. The discovery offers plant breeders a new tool to develop desirable dwarf varieties that could enhance the crop's resilience and profitability.
Published Harnessing green energy from plants depends on their circadian rhythms



Plant hydraulics drive the biological process that moves fluids from roots to plant stems and leaves, creating streaming electric potential, or voltage, in the process. A study closely examined the differences in voltage caused by the concentrations of ions, types of ions, and pH of the fluid plants transport, tying the voltage changes to the plant's circadian rhythm that causes adjustments day and night. According to the authors, this consistent, cyclic voltage creation could be harnessed as an energy source.
Published Transgenic expression of rubisco factors increases photosynthesis and chilling tolerance in maize



Maize is one of the world's most widely grown crops and is essential to global food security. But like other plants, its growth and productivity can be limited by the slow activity of Rubisco, the enzyme responsible for carbon assimilation during photosynthesis. Scientists have now demonstrated a promising approach to enhancing Rubisco production, thus improving photosynthesis and overall plant growth.
Published Controlling water, transforming greenhouse gases



Researchers have outlined a way to manipulate water molecules to make CO2R more efficient, with the ultimate goal of creating a clean energy loop. Through their new method, the team was able to perform CO2R with nearly 100% efficiency under mildly acidic conditions, using either gold or zinc as catalysts.
Published Observing mammalian cells with superfast soft X-rays



Researchers have developed a new technique to view living mammalian cells. The team used a powerful laser, called a soft X-ray free electron laser, to emit ultrafast pulses of illumination at the speed of femtoseconds, or quadrillionths of a second. With this they could capture images of carbon-based structures in living cells for the first time, before the soft X-ray radiation damaged them.
Published Key role of plant-bacteria communication for the assembly of a healthy plant microbiome supporting sustainable plant nutrition



In an interdisciplinary study, researchers discovered that symbiotic bacteria communicate with legume plants through specific molecules and that this communication influences which bacteria grow near the plant roots. The findings provide insights into how plants and soil bacteria form beneficial partnerships for nutrient uptake and resilience. These results are a step towards understanding how communication between plants and soil bacteria can lead to specific beneficial associations providing plants with nutrients.
Published Designing a better nest to help endangered turtles



With Ontario's eight species of turtles considered at risk, a new nest designed by researchers has the potential to significantly bolster their struggling populations. The habitat is the first designed for turtles in rock barren landscapes, such as the research site around Georgian Bay. It uses moss and lichen. The researchers found that the design provided a more stable environment for incubating eggs compared to natural sites, where the probability of an egg hatching was only 10 per cent compared to 41 per cent in the created site.