Showing 20 articles starting at article 1461
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: Nature
Published Habitat will dictate whether ground beetles win or lose against climate change


The success of North American crops from corn to Christmas trees partly depends on a relatively invisible component of the food web -- ground beetles. Nearly 2,000 species of ground beetle live in North America. New research shows that some of these insects could thrive while others could decline as the climate changes. The team found that the response will largely depend on the species' traits and habitats and could have significant implications for conservation efforts.
Published Global natural history initiative builds groundbreaking database to address 21st century challenges


A group of natural history museums has mapped the total collections from 73 of the world's largest natural history museums in 28 countries. This is the first step of an ambitious effort to inventory global holdings that can help scientists and decision makers find solutions to urgent, wide-ranging issues such as climate change, food insecurity, human health, pandemic preparedness, and wildlife conservation.
Published At least 80% of the world's most important sites for biodiversity on land currently contain human developments


At least 80% of sites identified as being internationally important for biodiversity on land currently contain infrastructure -- of which more than 75% contain roads. In the future, more sites that are important for biodiversity could contain powerplants, mines and oil and gas infrastructure.
Published Closed loop for circular economy: New polymer recycling strategy ensures both high stability and complete recyclability


Large amounts of plastic waste are incinerated or deposited in landfills. This degrades the environment and depletes valuable resources. In this light, recycling plastics such as polymers is promising. However, recycling diminishes their quality. Recently, researchers have proposed a 'closed-loop' recycling process based on polymer microparticles. It produces fully recyclable polymer films with high mechanical stability and fracture energy, which they retain upon recycling.
Published AI finds the first stars were not alone


Machine learning and state-of-the-art supernova nucleosynthesis has helped researchers find that the majority of observed second-generation stars in the universe were enriched by multiple supernovae.
Published Without this, plants cannot respond to temperature


Scientists have significantly advanced the race to control plant responses to temperature on a rapidly warming planet. Key to this breakthrough is miRNA, a molecule nearly 200,000 times smaller than the width of a human hair.
Published Towards reducing biodiversity loss in fragmented habitats


By combining lab experiments and mathematical modelling, researchers have found a way to predict the movement of species that could guide conservation efforts to reconnect fragmented habitats.
Published Photosynthesis 'hack' could lead to new ways of generating renewable energy


Researchers have 'hacked' the earliest stages of photosynthesis, the natural machine that powers the vast majority of life on Earth, and discovered new ways to extract energy from the process, a finding that could lead to new ways of generating clean fuel and renewable energy.
Published Semiconductor lattice marries electrons and magnetic moments


A model system created by stacking a pair of monolayer semiconductors is giving physicists a simpler way to study confounding quantum behavior, from heavy fermions to exotic quantum phase transitions.
Published New simulation reveals secrets of exotic form of electrons called polarons


Conditions mapped for the first time of polaron characteristics in 2D materials. TACC's Frontera supercomputer generated quantum mechanical calculations on hexagonal boron nitride system of 30,000 atoms.
Published Synthesis gas and battery power from sunlight energy


Plants use photosynthesis to harvest energy from sunlight. Now researchers have applied this principle as the basis for developing new sustainable processes which in the future may produce syngas (synthetic gas) for the large-scale chemical industry and be able to charge batteries.
Published Visualization of electron dynamics on liquid helium


An international team has discovered how electrons can slither rapidly to-and-fro across a quantum surface when driven by external forces. The research has enabled the visualization of the motion of electrons on liquid helium.
Published 'Y-ball' compound yields quantum secrets


Scientists investigating a compound called 'Y-ball' -- which belongs to a mysterious class of 'strange metals' viewed as centrally important to next-generation quantum materials -- have found new ways to probe and understand its behavior.
Published Batteries: Passivation layer mystery solved


In our daily lives, lithium-ion batteries have become indispensable. They function only because of a passivation layer that forms during their initial cycle. As researchers found out via simulations, this solid electrolyte interphase develops not directly at the electrode but aggregates in the solution. Their findings allow the optimization of the performance and lifetime of future batteries.
Published Surprise in the quantum world: Disorder leads to ferromagnetic topological insulator


Magnetic topological insulators are an exotic class of materials that conduct electrons without any resistance at all and so are regarded as a promising breakthrough in materials science. Researchers have achieved a significant milestone in the pursuit of energy-efficient quantum technologies by designing the ferromagnetic topological insulator MnBi6Te10 from the manganese bismuth telluride family. The amazing thing about this quantum material is that its ferromagnetic properties only occur when some atoms swap places, introducing antisite disorder.
Published 'Inkable' nanomaterial promises big benefits for bendable electronics


An international team of scientists is developing an inkable nanomaterial that they say could one day become a spray-on electronic component for ultra-thin, lightweight and bendable displays and devices.
Published Forest growing season in eastern U.S. has increased by a month


The growing period of hardwood forests in eastern North America has increased by an average of one month over the past century as temperatures have steadily risen, a new study has found.
Published High-energy-density, long life-cycle rechargeable lithium metal batteries


Research shows promise for developing high-energy-density rechargeable lithium-metal batteries and addressing the electrochemical oxidation instability of ether-based electrolytes.
Published Douglas-fir in Klamath Mountains are in 'decline spiral'


Increases in mortality among Douglas-fir in the Klamath Mountains are the result of multiple factors that have the iconic tree in a 'decline spiral' in parts of the region.
Published Biodiversity amid climate change


Fewer parasites in U.S. waters might be seen by many as a good thing, but a biologist says the trend signals potential danger for fish and other wildlife.