Showing 20 articles starting at article 581

< Previous 20 articles        Next 20 articles >

Categories: Ecology: Sea Life, Physics: General

Return to the site home page

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Optics
Published

How black silicon, a prized material used in solar cells, gets its dark, rough edge      (via sciencedaily.com)     Original source 

Researchers have developed a new theoretical model explaining one way to make black silicon. The new etching model precisely explains how fluorine gas breaks certain bonds in the silicon more often than others, depending on the orientation of the bond at the surface. Black silicon is an important material used in solar cells, light sensors, antibacterial surfaces and many other applications.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers demonstrate that quantum entanglement and topology are inextricably linked      (via sciencedaily.com)     Original source 

Researchers have demonstrated the remarkable ability to perturb pairs of spatially separated yet interconnected quantum entangled particles without altering their shared properties.

Biology: Cell Biology Biology: Developmental Biology: General Biology: Marine Biology: Zoology Ecology: Sea Life Offbeat: General Offbeat: Plants and Animals
Published

Stranger than friction: A force initiating life      (via sciencedaily.com)     Original source 

As the potter works the spinning wheel, the friction between their hands and the soft clay helps them shape it into all kinds of forms and creations. In a fascinating parallel, sea squirt oocytes (immature egg cells) harness friction within various compartments in their interior to undergo developmental changes after conception.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New study uses machine learning to bridge the reality gap in quantum devices      (via sciencedaily.com)     Original source 

A study has used the power of machine learning to overcome a key challenge affecting quantum devices. For the first time, the findings reveal a way to close the 'reality gap': the difference between predicted and observed behavior from quantum devices.

Biology: General Biology: Marine Ecology: Sea Life Environmental: Ecosystems Environmental: General Geoscience: Geography
Published

Protecting coral 'nurseries' as important as safeguarding established coral reefs      (via sciencedaily.com)     Original source 

New research in the southwestern part of Hawai'i Island shows that identifying and protecting marine ecosystems both down-current and up-current of coral reefs, specifically areas where coral larvae are more likely to survive and thrive, is crucial to future coral conservation and restoration efforts -- especially as reefs face increasing pressure from the devastating effects of climate change.

Biology: Biochemistry Biology: General Biology: Marine Chemistry: Biochemistry Ecology: Sea Life Engineering: Robotics Research Offbeat: General Offbeat: Plants and Animals
Published

Fastest swimming insect could inspire uncrewed boat designs      (via sciencedaily.com)     Original source 

Whirligig beetles, the world's fastest-swimming insect, achieve surprising speeds by employing a strategy shared by fast-swimming marine mammals and waterfowl, according to a new study that rewrites previous explanations of the physics involved.

Chemistry: Inorganic Chemistry Energy: Technology Physics: General
Published

Using berry phase monopole engineering for high-temperature spintronic devices      (via sciencedaily.com)     Original source 

Spin-orbit torque (SOT), an important phenomenon for developing ultrafast and low-power spintronic devices, can be enhanced through Berry phase monopole engineering at high temperatures. In a new study, the temperature dependence of the intrinsic spin Hall effect of TaSi2 was investigated. The results suggest that Berry phase monopole engineering is an effective strategy for achieving high-temperature SOT spintronic devices.

Biology: Biochemistry Biology: Evolutionary Biology: General Biology: Genetics Biology: Marine Biology: Zoology Ecology: Animals Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals
Published

The snail or the egg?      (via sciencedaily.com)     Original source 

Animals reproduce in one of two distinct ways: egg-laying or live birth. By studying an evolutionarily recent transition from egg-laying to live-bearing in a marine snail, collaborative research has shed new light on the genetic changes that allow organisms to make the switch.

Biology: General Biology: Marine Biology: Zoology Ecology: General Ecology: Nature Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: General
Published

The choreography connecting kelp forests to the beach      (via sciencedaily.com)     Original source 

A new study uncovers a symphony of synchrony between the kelp forest and beach, with broader implications for the beach food web as the climate changes.

Biology: Developmental Biology: General Biology: Marine Biology: Zoology Ecology: Animals Ecology: Sea Life Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

'Giant' predator worms more than half a billion years old discovered in North Greenland      (via sciencedaily.com)     Original source 

Fossils of a new group of animal predators have been located in the Early Cambrian Sirius Passet fossil locality in North Greenland. These large worms may be some of the earliest carnivorous animals to have colonized the water column more than 518 million years ago, revealing a past dynasty of predators that scientists didn't know existed.

Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Functional semiconductor made from graphene      (via sciencedaily.com)     Original source 

Researchers have created the first functional semiconductor made from graphene, a single sheet of carbon atoms held together by the strongest bonds known. The breakthrough throws open the door to a new way of doing electronics.

Engineering: Nanotechnology Environmental: General Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers boost signal amplification in perovskite nanosheets      (via sciencedaily.com)     Original source 

Perovskite nanosheets show distinctive characteristics with significant applications in science and technology. In a recent study, researchers achieved enhanced signal amplification in CsPbBr3 perovskite nanosheets with a unique waveguide pattern, which enhanced both gain and thermal stability. These advancements carry wide-ranging implications for laser, sensor, and solar cell applications, and can potentially influence areas like environmental monitoring, industrial processes, and healthcare.

Chemistry: General Energy: Fossil Fuels Energy: Technology Engineering: Graphene Physics: General
Published

Better microelectronics from coal      (via sciencedaily.com)     Original source 

Coal is an abundant resource in the United States that has, unfortunately, contributed to climate change through its use as a fossil fuel. As the country transitions to other means of energy production, it will be important to consider and reevaluate coal's economic role. Coal may actually play a vital role in next-generation electronic devices.

Computer Science: Quantum Computers Computer Science: Virtual Reality (VR) Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Non-toxic quantum dots pave the way towards CMOS shortwave infrared image sensors for consumer electronics      (via sciencedaily.com)     Original source 

Researchers have fabricated a new high-performance shortwave infrared (SWIR) image sensor based on non-toxic colloidal quantum dots. They report on a new method for synthesizing functional high-quality non-toxic colloidal quantum dots integrable with complementary metal-oxide-semiconductor (CMOS) technology.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Physics: General
Published

Molecules exhibit non-reciprocal interactions without external forces      (via sciencedaily.com)     Original source 

Researchers have discovered that molecules experience non-reciprocal interactions without external forces. Fundamental forces such as gravity and electromagnetism are reciprocal, where two objects are attracted to each other or are repelled by each other. In our everyday experience, however, interactions don t seem to follow this reciprocal law.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular Biology: Zoology Ecology: Sea Life
Published

How jellyfish regenerate functional tentacles in days      (via sciencedaily.com)     Original source 

At about the size of a pinkie nail, the jellyfish species Cladonema can regenerate an amputated tentacle in two to three days -- but how? Regenerating functional tissue across species, including salamanders and insects, relies on the ability to form a blastema, a clump of undifferentiated cells that can repair damage and grow into the missing appendage. Jellyfish, along with other cnidarians such as corals and sea anemones, exhibit high regeneration abilities, but how they form the critical blastema has remained a mystery until now.

Engineering: Graphene Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Laser-driving a 2D material      (via sciencedaily.com)     Original source 

Engineers pair vibrating particles, called phonons, with particles of light, called photons, to enhance the nonlinear optical properties of hexagonal boron nitride.

Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Computer Science: General Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Blue PHOLEDs: Final color of efficient OLEDs finally viable in lighting      (via sciencedaily.com)     Original source 

Lights could soon use the full color suite of perfectly efficient organic light-emitting diodes, or OLEDs, that last tens of thousands of hours. The new phosphorescent OLEDs, commonly referred to as PHOLEDs, can maintain 90% of the blue light intensity for 10-14 times longer than other designs that emit similar deep blue colors. That kind of lifespan could finally make blue PHOLEDs hardy enough to be commercially viable in lights that meet the Department of Energy's 50,000-hour lifetime target. Without a stable blue PHOLED, OLED lights need to use less-efficient technology to create white light.