Showing 20 articles starting at article 961
< Previous 20 articles Next 20 articles >
Categories: Ecology: Sea Life, Physics: General
Published Photosynthesis, key to life on Earth, starts with a single photon



A cutting-edge experiment has revealed the quantum dynamics of one of nature's most crucial processes.
Published For experimental physicists, quantum frustration leads to fundamental discovery



A team of physicists recently announced that they have discovered a new phase of matter. Called the 'chiral bose-liquid state,' the discovery opens a new path in the age-old effort to understand the nature of the physical world.
Published Metamaterials with built-in frustration have mechanical memory



Researchers have discovered how to design materials that necessarily have a point or line where the material doesn't deform under stress, and that even remember how they have been poked or squeezed in the past. These results could be used in robotics and mechanical computers, while similar design principles could be used in quantum computers.
Published New technique in error-prone quantum computing makes classical computers sweat



Today's quantum computers often calculate the wrong answer because of noisy environments that interfere with the quantum entanglement of qubits. IBM Quantum has pioneered a technique that accounts for the noise to achieve reliable results. They tested this error mitigation strategy against supercomputer simulations run by physicists, and for the hardest calculations, the quantum computer bested the supercomputer. This is evidence for the utility of today's noisy quantum computers for performing real-world calculations.
Published Hybrid AI-powered computer vision combines physics and big data



Researchers have laid out a new approach to enhance artificial intelligence-powered computer vision technologies by adding physics-based awareness to data-driven techniques. The study offered an overview of a hybrid methodology designed to improve how AI-based machinery sense, interact and respond to its environment in real time -- as in how autonomous vehicles move and maneuver, or how robots use the improved technology to carry out precision actions.
Published Shining potential of missing atoms



Single photons have applications in quantum computation, information networks, and sensors, and these can be emitted by defects in the atomically thin insulator hexagonal boron nitride (hBN). Missing nitrogen atoms have been suggested to be the atomic structure responsible for this activity, but it is difficult to controllably remove them. A team has now shown that single atoms can be kicked out using a scanning transmission electron microscope under ultra-high vacuum.
Published Hotter sand from microplastics could affect sea turtle development



New research has found that extreme concentrations of microplastics could increase the temperature of beach sand enough to threaten the development of incubating sea turtles.
Published Scientists investigate the evolution of animal developmental mechanisms, show how some of Earth's earliest animals evolved



Lacking bones, brains, and even a complete gut, the body plans of simple animals like sea anemones appear to have little in common with humans and their vertebrate kin. Nevertheless, new research shows that appearances can be deceiving, and that a common genetic toolkit can be deployed in different ways to drive embryological development to produce very different adult body plans. It is well established that sea anemones, corals, and their jellyfish relatives shared a common ancestor with humans that plied the Earth's ancient oceans over 600 million years ago. A new study from the Gibson Lab, published in Current Biology on June 13, 2023, illuminates the genetic basis for body plan development in the starlet sea anemone, Nematostella vectensis. This new knowledge paints a vivid picture of how some of the earliest animals on earth progressed from egg to embryo to adult.
Published Mirror, mirror on the wall... Now we know there are chiral phonons for sure



New findings settle the dispute: phonons can be chiral. This fundamental concept, discovered using circular X-ray light, sees phonons twisting like a corkscrew through quartz.
Published Why certain fish are left off the hook



A new study found that while a piece of legislation designed to foster the sustainability of marine fisheries is sometimes blamed for being too stringent -- leading to what some politicians call 'underfishing' -- the law is not constraining most fisheries, and there are various other reasons that lead to certain fish species being less fished.
Published Breakthrough: Scientists develop artificial molecules that behave like real ones



Scientists have developed synthetic molecules that resemble real organic molecules. A collaboration of researcher can now simulate the behavior of real molecules by using artificial molecules.
Published When water temperatures change, the molecular motors of cephalopods do too



Working with live squid hatchlings, scientists find the animals can tune their proteome on the fly in response to changes in ocean temperature via the unique process of RNA recoding. The findings inspire new questions about basic protein function.
Published Schrödinger's cat makes better qubits



Drawing from Schrodinger's cat thought experiment, scientists have built a 'critical cat code' qubit that uses bosons to store and process information in a way that is more reliable and resistant to errors than previous qubit designs.
Published Physicists discover an exotic material made of bosons



Take a lattice -- a flat section of a grid of uniform cells, like a window screen or a honeycomb -- and lay another, similar lattice above it. But instead of trying to line up the edges or the cells of both lattices, give the top grid a twist so that you can see portions of the lower one through it. This new, third pattern is a moiré, and it's between this type of overlapping arrangement of lattices of tungsten diselenide and tungsten disulfide where physicists found some interesting material behaviors.
Published Calculation shows why heavy quarks get caught up in the flow



Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.
Published Water molecules define the materials around us



A new paper argues that materials like wood, bacteria, and fungi belong to a newly identified class of matter, 'hydration solids.' The new findings emerged from ongoing research into the strange behavior of spores, dormant bacterial cells.
Published Sea cucumbers: The marine delicacy that can deter diabetes



They're a marine delicacy loved across Asia, but the humble sea cucumber is also proving to be a key ingredient in preventing diabetes, according to new research.
Published Coral disease tripled in the last 25 years. Three-quarters will likely be diseased by next century



Research suggests warming temperatures will see nearly 80 per cent of coral in reefs diseased in the next 80 years.
Published New superconducting diode could improve performance of quantum computers and artificial intelligence



A team has developed a more energy-efficient, tunable superconducting diode -- a promising component for future electronic devices -- that could help scale up quantum computers for industry and improve artificial intelligence systems.
Published The problems with coal ash start smaller than anyone thought



Burning coal doesn't only pollute the air. The resulting ash can leach toxic chemicals into the local environments where it's kept. New research shows that the toxicity of various ash stockpiles relies heavily on its nanoscale structures, which vary widely between sources. The results will help researchers predict which coal ash is most environmentally dangerous.