Showing 20 articles starting at article 1041
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: Invasive Species
Published Electrocatalysis under the atomic force microscope


A further development in atomic force microscopy now makes it possible to simultaneously image the height profile of nanometer-fine structures as well as the electric current and the frictional force at solid-liquid interfaces. A team has succeeded in analyzing electrocatalytically active materials and gaining insights that will help optimize catalysts. The method is also potentially suitable for studying processes on battery electrodes, in photocatalysis or on active biomaterials.
Published Eiphosoma laphygmae likely to be best classical biological control against devastating fall armyworm pest


A review suggests that the parasitoid Eiphosoma laphygmae is likely to be the best classical biological control from the Americas against the devastating fall armyworm pest.
Published Hitting nuclei with light may create fluid primordial matter


A new analysis supports the idea that photons colliding with heavy ions create a fluid of 'strongly interacting' particles. The results indicate that photon-heavy ion collisions can create a strongly interacting fluid that responds to the initial collision geometry and that these collisions can form a quark-gluon plasma. These findings will help guide future experiments at the planned Electron-Ion Collider.
Published A surprising way to trap a microparticle


New study finds obstacles can trap rolling microparticles in fluid. Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created by hydrodynamics. Random motions of the molecules within the fluid then 'kick' the microroller into a stagnant pocket, effectively trapping it.
Published eDNA holds the key to safeguarding pollinators amid global declines


Researchers have uncovered new evidence of western pygmy possums interacting with native flowers, providing an eDNA study to simultaneously detect mammal, insect and bird DNA on flowers.
Published Viable superconducting material created, say researchers


Researchers report the creation of a superconducting material at both a temperature and pressure low enough for practical applications. In a new paper, the researchers describe a nitrogen-doped lutetium hydride that exhibits superconductivity at 69 degrees Fahrenheit and 10 kilobars (145,000 pounds per square inch, or psi) of pressure.
Published To help dry forests, fire needs to be just the right intensity, and happen more than once


Research into the ability of a wildfire to improve the health of a forest uncovered a Goldilocks effect -- unless a blaze falls in a narrow severity range, neither too hot nor too cold, it isn't very good at helping forest landscapes return to their historical, more fire-tolerant conditions.
Published Enhancing at-home COVID tests with glow-in-the dark materials


Researchers are using glow-in-the-dark materials to enhance and improve rapid COVID-19 home tests.
Published Controlling electric double layer dynamics for next generation all-solid-state batteries


Development of all-solid-state batteries is crucial to achieve carbon neutrality. However, their high surface resistance causes these batteries to have low output, limiting their applications. To this end, researchers have employed a novel technique to investigate and modulate electric double layer dynamics at the solid/solid electrolyte interface. The researchers demonstrate unprecedented control of response speed by over two orders of magnitude, a major steppingstone towards realization of commercial all-solid-state batteries.
Published The positive outlooks of studying negatively-charged chiral molecules


The ability to distinguish two chiral enantiomers is an essential analytical capability for chemical industries including pharmaceutical companies, flavor/odor engineering and forensic science. A new wave of chiral optical methods have shown significant improvements in chiral sensitivity, compared to their predecessors, leading to potential analytical advantages for chiral discrimination.
Published Catalyst purifies herbicide-tainted water and produces hydrogen


Researchers have developed a dual-purpose catalyst that purifies herbicide-tainted water while also producing hydrogen.
Published Researchers propose a simple, inexpensive approach to fabricating carbon nanotube wiring on plastic films


Researchers have developed an inexpensive method for fabricating multi-walled carbon nanotubes (MWNTs) on a plastic film. The proposed method is simple, can be applied under ambient conditions, reuses MWNTs, and produces flexible wires of tunable resistances without requiring additional steps. It eliminates several drawbacks of current fabrication methods, making it useful for large-scale manufacturing of carbon wiring for flexible all-carbon devices.
Published Coral-friendly sunscreen provides better UV protection than existing options


Researchers have developed a prototype for coral-reef-friendly sunscreens by using polymerization to create large molecules that still block UV radiation but are too big to penetrate our skin, coral, and algae. The polymeric UV filter was more effective at preventing sunburn in mice than existing sunscreens.
Published Deforestation in the tropics linked to a reduction in rainfall


Deforestation is resulting in reduced rainfall across large parts of the tropics, according to new research. People living in tropical forest communities have often complained that the climate gets hotter and drier once trees are cleared but until now, scientists have not been able to identify a clear link between the loss of tree cover and a decline in rainfall.
Published Quantum chemistry: Molecules caught tunneling


Quantum effects can play an important role in chemical reactions. Physicists have now observed a quantum mechanical tunneling reaction in experiments. The observation can also be described exactly in theory. The scientists provide an important reference for this fundamental effect in chemistry. It is the slowest reaction with charged particles ever observed.
Published Sustainable process for the production of vanillin from lignin makes further progress


The demand for vanillin vastly outstrips the natural resources of this flavoring agent. A chemical process is thus used to produce the required large quantities of vanillin from petroleum, which is far less expensive than obtaining the substance from fermented genuine vanilla pods. Another alternative is to make vanillin from lignin, a waste product of the wood pulping industry. A team has now managed to further enhance their method of electrochemical production of vanillin from lignin in that they employ a 'green' oxidation method for this purpose.
Published New purification method could make protein drugs cheaper



Engineers devised a way to purify protein drugs during manufacturing. Their approach, which uses nanoparticles to rapidly crystallize proteins, could help make protein drugs more affordable and accessible, especially in developing countries.
Published Flower power: The role of ants in forest regeneration


Ants play a key role in forest regeneration, according to a new article.
Published Australia's rarest bird of prey disappearing at alarming rate


Australia's rarest bird of prey -- the red goshawk -- is facing extinction, with Cape York Peninsula now the only place in Queensland known to support breeding populations.
Published New superacid converts harmful compounds into sustainable chemicals


Researchers have succeeded in producing very special catalysts, known as 'Lewis superacids', which can be used to break strong chemical bonds and speed up reactions. The production of these substances has, until now, proven extremely difficult. The chemists' discovery enables non-biodegradable fluorinated hydrocarbons, similar to Teflon, and possibly even climate-damaging greenhouse gases, such as sulphur hexafluoride, to be converted back into sustainable chemicals.