Chemistry: Inorganic Chemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

New crystal production method could enhance quantum computers and electronics      (via sciencedaily.com)     Original source 

Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.

Anthropology: Cultures Anthropology: General Biology: Botany Ecology: Invasive Species
Published

Legacy of Indigenous stewardship of camas dates back more than 3,500 years      (via sciencedaily.com)     Original source 

A new study found evidence that Indigenous groups in the Pacific Northwest were intentionally harvesting edible camas bulbs at optimal stages of the plant's maturation as far back as 3,500 years ago.

Biology: Biochemistry Biology: General Biology: Zoology Ecology: Extinction Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Environmental: Biodiversity Environmental: Ecosystems Environmental: General Geoscience: Earth Science
Published

Regional differences in bird diversity in agroforestry systems      (via sciencedaily.com)     Original source 

The diversity and ecological functionality of bird communities in tropical agroforestry systems are shaped by the surrounding landscape, in particular the extent and composition of the forest.

Biology: Biochemistry Biology: General Biology: Microbiology Ecology: Invasive Species Geoscience: Geochemistry
Published

Researchers find unique adaptations of fungus associated with bee bread      (via sciencedaily.com)     Original source 

The past attempts of honey bee researchers to inventory the fungal diversity in honey bee colonies revealed that Aspergillus flavus is frequently found in hives. In a new study, researchers have discovered that this fungus is uniquely adapted to survive in bee colonies.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

Researchers introduce programmable materials to help heal broken bones      (via sciencedaily.com)     Original source 

Natural materials like bone, bird feathers and wood have an intelligent approach to physical stress distribution, despite their irregular architectures. However, the relationship between stress modulation and their structures has remained elusive. A new study that integrates machine learning, optimization, 3D printing and stress experiments allowed engineers to gain insight into these natural wonders by developing a material that replicates the functionalities of human bone for orthopedic femur restoration.

Biology: Marine Biology: Zoology Ecology: Endangered Species Ecology: General Ecology: Invasive Species Ecology: Research Ecology: Sea Life Environmental: Ecosystems Environmental: Water Geoscience: Geography Geoscience: Oceanography
Published

A rise in sea urchins and related damage to kelp forests impacts Oregon's gray whales and their food      (via sciencedaily.com)     Original source 

A recent boom in the purple sea urchin population off the southern Oregon Coast appears to have had an indirect and negative impact on the gray whales that usually forage in the region, a new study shows.

Chemistry: Inorganic Chemistry Chemistry: Thermodynamics Energy: Technology Engineering: Nanotechnology
Published

Powering wearable devices with high-performing carbon nanotube yarns      (via sciencedaily.com)     Original source 

Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

By listening, scientists learn how a protein folds      (via sciencedaily.com)     Original source 

By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.

Chemistry: Inorganic Chemistry Engineering: Graphene Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Enhancing superconductivity of graphene-calcium superconductors      (via sciencedaily.com)     Original source 

Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.

Anthropology: Cultures Biology: Biochemistry Biology: Biotechnology Biology: Evolutionary Biology: General Biology: Microbiology Biology: Zoology Ecology: Endangered Species Ecology: Extinction Ecology: Invasive Species Geoscience: Geography Paleontology: Fossils Paleontology: General
Published

Evolutionary history of extinct duck revealed      (via sciencedaily.com)     Original source 

The study's findings show mergansers arrived in the New Zealand region at least seven million years ago from the Northern Hemisphere, in a separate colonisation event to that which led to the Brazilian merganser.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues      (via sciencedaily.com)     Original source 

Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.

Chemistry: Inorganic Chemistry Engineering: Nanotechnology Environmental: General Environmental: Water Geoscience: Environmental Issues
Published

Expanding on the fundamental principles of liquid movement      (via sciencedaily.com)     Original source 

We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.

Chemistry: Inorganic Chemistry Energy: Nuclear Energy: Technology Physics: General Physics: Optics Physics: Quantum Physics
Published

Magnetic imprint on deconfined nuclear matter      (via sciencedaily.com)     Original source 

Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Environmental: General Geoscience: Environmental Issues
Published

New data-driven model rapidly predicts dehydrogenation barriers in solid-state materials      (via sciencedaily.com)     Original source 

Researchers have developed a groundbreaking data-driven model to predict the dehydrogenation barriers of magnesium hydride, a promising material for solid-state hydrogen storage. This advancement holds significant potential for enhancing hydrogen storage technologies, a crucial component in the transition to sustainable energy solutions.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Offbeat: Computers and Math Offbeat: General Physics: General Physics: Optics
Published

Diamond glitter: A play of colors with artificial DNA crystals      (via sciencedaily.com)     Original source 

Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry
Published

Breaking bonds to form bonds: Rethinking the Chemistry of Cations      (via sciencedaily.com)     Original source 

A team of chemists has achieved a significant breakthrough in the field of chemical synthesis, developing a novel method for manipulating carbon-hydrogen bonds. This groundbreaking discovery provides new insights into the molecular interactions of positively charged carbon atoms. By selectively targeting a specific C--H bond, they open doors to synthetic pathways that were previously closed -- with potential applications in medicine.

Chemistry: Inorganic Chemistry Energy: Alternative Fuels Physics: General
Published

Shedding light on perovskite hydrides using a new deposition technique      (via sciencedaily.com)     Original source 

Perovskite hydrides are promising materials for various emerging energy technologies, but measuring their intrinsic hydride-ion conductivity is difficult. In a recent study, researchers address this issue using a novel laser deposition technique in an H-radical atmosphere. Using this approach, they grew thin-film single crystals of two different perovskite hydrides and characterized their hydride-ion conductivity. These efforts will bolster research on hydrogen-related materials.

Biology: Biochemistry Biology: General Chemistry: Biochemistry Chemistry: Inorganic Chemistry
Published

What fire ants can teach us about making better, self-healing materials      (via sciencedaily.com)     Original source 

Fire ants form rafts to survive flooding, but how do those bonds work? And what can we learn from them? A professor is researching those questions to expand our knowledge of materials science.