Showing 20 articles starting at article 201
< Previous 20 articles Next 20 articles >
Categories: Chemistry: Inorganic Chemistry, Ecology: Invasive Species
Published New crystal production method could enhance quantum computers and electronics



Scientists describe a new method to make very thin crystals of the element bismuth -- a process that may aid the manufacturing of cheap flexible electronics an everyday reality.
Published Legacy of Indigenous stewardship of camas dates back more than 3,500 years



A new study found evidence that Indigenous groups in the Pacific Northwest were intentionally harvesting edible camas bulbs at optimal stages of the plant's maturation as far back as 3,500 years ago.
Published Regional differences in bird diversity in agroforestry systems



The diversity and ecological functionality of bird communities in tropical agroforestry systems are shaped by the surrounding landscape, in particular the extent and composition of the forest.
Published Researchers find unique adaptations of fungus associated with bee bread



The past attempts of honey bee researchers to inventory the fungal diversity in honey bee colonies revealed that Aspergillus flavus is frequently found in hives. In a new study, researchers have discovered that this fungus is uniquely adapted to survive in bee colonies.
Published Researchers introduce programmable materials to help heal broken bones



Natural materials like bone, bird feathers and wood have an intelligent approach to physical stress distribution, despite their irregular architectures. However, the relationship between stress modulation and their structures has remained elusive. A new study that integrates machine learning, optimization, 3D printing and stress experiments allowed engineers to gain insight into these natural wonders by developing a material that replicates the functionalities of human bone for orthopedic femur restoration.
Published A rise in sea urchins and related damage to kelp forests impacts Oregon's gray whales and their food



A recent boom in the purple sea urchin population off the southern Oregon Coast appears to have had an indirect and negative impact on the gray whales that usually forage in the region, a new study shows.
Published Powering wearable devices with high-performing carbon nanotube yarns



Carbon nanotube (CNT) yarns are promising for flexible and fabric-type wearable materials that can convert waste heat into thermoelectricity. To improve the thermoelectric properties of CNT yarns, researchers dispersed CNT filaments in a highly viscous glycerol, enabling the production of CNT yarn with highly aligned bundles together with surfactants that prevent increased thermal conductivity. This innovative approach can significantly improve carbon nanotube-based thermoelectric materials, making it possible to power wearable devices using just body heat.
Published By listening, scientists learn how a protein folds



By converting their data into sounds, scientists discovered how hydrogen bonds contribute to the lightning-fast gyrations that transform a string of amino acids into a functional, folded protein. Their report offers an unprecedented view of the sequence of hydrogen-bonding events that occur when a protein morphs from an unfolded to a folded state.
Published Enhancing superconductivity of graphene-calcium superconductors



Researchers experimentally investigate the impact of introducing high-density calcium on the superconductivity of calcium-intercalated bilayer graphene.
Published Evolutionary history of extinct duck revealed



The study's findings show mergansers arrived in the New Zealand region at least seven million years ago from the Northern Hemisphere, in a separate colonisation event to that which led to the Brazilian merganser.
Published Seeking stronger steel, systematic look at 120 combinations of alloy elements provides clues



Investigating ways to create high-performance steel, a research team used theoretical calculations on 120 combinations of 12 alloy elements, such as aluminum and titanium, with carbon and nitrogen, while also systematically clarifying the bonding mechanism.
Published Cloudy waters causes African fish to develop bigger eyes



Variations in water quality can impact the development of the visual system of one species of African fish, suggests a new study.
Published Expanding on the fundamental principles of liquid movement



We are living in a world surrounded by liquid and flow, and understanding the principles that govern its movement is vital in our high-tech world. Through mathematical modeling and experimentation, researchers have expanded on Tanner's Law -- a law in fluid dynamics that describes how non-volatile liquids move across surfaces -- to cover a wider range of volatile liquids. These findings have the potential to play a role in various liquid-based industries such as electronics cooling.
Published Magnetic imprint on deconfined nuclear matter



Scientists have the first direct evidence that the powerful magnetic fields created in off-center collisions of atomic nuclei induce an electric current in 'deconfined' nuclear matter. The study used measurements of how charged particles are deflected when they emerge from the collisions. The study provides proof that the magnetic fields exist and offers a new way to measure electrical conductivity in quark-gluon plasma.
Published New data-driven model rapidly predicts dehydrogenation barriers in solid-state materials



Researchers have developed a groundbreaking data-driven model to predict the dehydrogenation barriers of magnesium hydride, a promising material for solid-state hydrogen storage. This advancement holds significant potential for enhancing hydrogen storage technologies, a crucial component in the transition to sustainable energy solutions.
Published Diamond glitter: A play of colors with artificial DNA crystals



Using DNA origami, researchers have built a diamond lattice with a periodicity of hundreds of nanometers -- a new approach for manufacturing semiconductors for visible light.
Published Chemists develop new method for making gamma chiral centers on simple carboxylic acids



C-H activation-based method should speed drug molecule design and diversification.
Published Breaking bonds to form bonds: Rethinking the Chemistry of Cations



A team of chemists has achieved a significant breakthrough in the field of chemical synthesis, developing a novel method for manipulating carbon-hydrogen bonds. This groundbreaking discovery provides new insights into the molecular interactions of positively charged carbon atoms. By selectively targeting a specific C--H bond, they open doors to synthetic pathways that were previously closed -- with potential applications in medicine.
Published Shedding light on perovskite hydrides using a new deposition technique



Perovskite hydrides are promising materials for various emerging energy technologies, but measuring their intrinsic hydride-ion conductivity is difficult. In a recent study, researchers address this issue using a novel laser deposition technique in an H-radical atmosphere. Using this approach, they grew thin-film single crystals of two different perovskite hydrides and characterized their hydride-ion conductivity. These efforts will bolster research on hydrogen-related materials.
Published What fire ants can teach us about making better, self-healing materials



Fire ants form rafts to survive flooding, but how do those bonds work? And what can we learn from them? A professor is researching those questions to expand our knowledge of materials science.