Biology: General Biology: Zoology Ecology: Animals Ecology: General Ecology: Invasive Species Ecology: Nature Ecology: Research Environmental: Ecosystems Environmental: General Geoscience: Environmental Issues Geoscience: Geography
Published

Alien invasion: Non-native earthworms threaten ecosystems      (via sciencedaily.com)     Original source 

Analysis reveals imported earthworm species have colonized large swaths of North America, and represent a largely overlooked threat to native ecosystems. The researchers warn of the need to better understand and manage the invaders in our midst.

Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Technique could improve the sensitivity of quantum sensing devices      (via sciencedaily.com)     Original source 

A new technique can control a larger number of microscopic defects in a diamond. These defects can be used as qubits for quantum sensing applications, and being able to control a greater number of qubits would improve the sensitivity of such devices.

Chemistry: Biochemistry Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Combining materials may support unique superconductivity for quantum computing      (via sciencedaily.com)     Original source 

A new fusion of materials, each with special electrical properties, has all the components required for a unique type of superconductivity that could provide the basis for more robust quantum computing.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Structural isomerization of individual molecules using a scanning tunneling microscope probe      (via sciencedaily.com)     Original source 

An international research team has succeeded in controlling the chirality of individual molecules through structural isomerization. The team also succeeded in synthesizing highly reactive diradicals with two unpaired electrons. These achievements were made using a scanning tunneling microscope probe at low temperatures.

Chemistry: Inorganic Chemistry Computer Science: Quantum Computers Engineering: Nanotechnology Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Direct view of tantalum oxidation that impedes qubit coherence      (via sciencedaily.com)     Original source 

Scientists have used a combination of scanning transmission electron microscopy (STEM) and computational modeling to get a closer look and deeper understanding of tantalum oxide. When this amorphous oxide layer forms on the surface of tantalum -- a superconductor that shows great promise for making the 'qubit' building blocks of a quantum computer -- it can impede the material's ability to retain quantum information. Learning how the oxide forms may offer clues as to why this happens -- and potentially point to ways to prevent quantum coherence loss.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Magnesium protects tantalum, a promising material for making qubits      (via sciencedaily.com)     Original source 

Scientists have discovered that adding a layer of magnesium improves the properties of tantalum, a superconducting material that shows great promise for building qubits, the basis of quantum computers. The scientists show that a thin layer of magnesium keeps tantalum from oxidizing, improves its purity, and raises the temperature at which it operates as a superconductor. All three may increase tantalum's ability to hold onto quantum information in qubits.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

A physical qubit with built-in error correction      (via sciencedaily.com)     Original source 

Researchers have succeeded in generating a logical qubit from a single light pulse that has the inherent capacity to correct errors.

Biology: Biochemistry Biology: Botany Biology: Evolutionary Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Trees Offbeat: General Offbeat: Paleontology and Archeology Offbeat: Plants and Animals Paleontology: Fossils Paleontology: General
Published

Rare 3D fossils show that some early trees had forms unlike any you've ever seen      (via sciencedaily.com)     Original source 

In the fossil record, trees typically are preserved with only their trunks. They don't usually include any leaves to show what their canopies and overall forms may have looked like. In a new study, researchers describe fossilized trees from New Brunswick, Canada with a surprising and unique three-dimensional crown shape.

Chemistry: Biochemistry Physics: General Physics: Optics Physics: Quantum Computing Physics: Quantum Physics
Published

Short X-ray pulses reveal the source of light-induced ferroelectricity in SrTiO3      (via sciencedaily.com)     Original source 

Researchers have gained new insights into the development of the light-induced ferroelectric state in SrTiO3. They exposed the material to mid-infrared and terahertz frequency laser pulses and found that the fluctuations of its atomic positions are reduced under these conditions. This may explain why the dipolar structure is more ordered than in equilibrium and why the laser pulses induce a ferroelectric state in the material.

Computer Science: General Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists make breakthrough in quantum materials research      (via sciencedaily.com)     Original source 

Researchers describe the discovery of a new method that transforms everyday materials like glass into materials scientists can use to make quantum computers.

Biology: Biochemistry Biology: General Biology: Microbiology Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Environmental: General Environmental: Water Geoscience: Environmental Issues Geoscience: Geochemistry Geoscience: Severe Weather
Published

Fungal-rich soil may improve green roofs      (via sciencedaily.com)     Original source 

Green roofs have become increasingly popular thanks to their benefits related to climate adaptation, mitigation, and urban biodiversity management. But, in the U.S., green roofs are typically planted with non-native plants in sterile soils, and their effectiveness declines over time. A new study finds that managing green roof soil microbes boosts healthy urban soil development, which is a methodology that could be applied to support climate resilience in cities.

Biology: Biochemistry Biology: Marine Ecology: Invasive Species Ecology: Sea Life Environmental: Ecosystems Environmental: General Environmental: Water Geoscience: Geography Geoscience: Oceanography
Published

As sea otters recolonize California estuary, they restore its degraded geology      (via sciencedaily.com)     Original source 

As sea otters recolonize a California estuary, they are restoring its degraded geology by keeping populations of overgrazing marsh crabs in check, a new study shows. The crabs' appetite for plant roots, and their tunneling behavior had caused many of the estuary's marshes and creekbanks to erode and collapse in the otters' absence. Today, erosion has slowed by up to 90% in areas with large otter populations and marshes and streambeds are restabilizing.

Computer Science: General Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Researchers craft new way to make high-temperature superconductors -- with a twist      (via sciencedaily.com)     Original source 

An international team has developed a new method to make and manipulate a widely studied class of high-temperature superconductors. This technique should pave the way for the creation of unusual forms of superconductivity in previously unattainable materials.

Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Superfluids could share characteristic with common fluids      (via sciencedaily.com)     Original source 

Every fluid -- from Earth's atmosphere to blood pumping through the human body -- has viscosity, a quantifiable characteristic describing how the fluid will deform when it encounters some other matter. If the viscosity is higher, the fluid flows calmly, a state known as laminar. If the viscosity decreases, the fluid undergoes the transition from laminar to turbulent flow. The degree of laminar or turbulent flow is referred to as the Reynolds number, which is inversely proportional to the viscosity. However, this Reynolds similitude does not apply to quantum superfluids. A researcher has theorized a way to examine the Reynolds similitude in superfluids, which could demonstrate the existence of quantum viscosity in superfluids.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: General
Published

Asparagus and orchids are more similar than you think      (via sciencedaily.com)     Original source 

How is a beech leaf constructed? What determines the appearance of an asparagus? A new 'encyclopaedia' helps us learn more about the building blocks of plants. The encyclopaedia, probably the largest of its kind, could be used to improve targeted plant breeding efforts, to make them both more climate-resilient and more easily digestible.

Chemistry: Biochemistry Chemistry: General Chemistry: Inorganic Chemistry Chemistry: Organic Chemistry Engineering: Nanotechnology Physics: General Physics: Quantum Computing
Published

Small yet mighty: Showcasing precision nanocluster formation with molecular traps      (via sciencedaily.com)     Original source 

Nanoclusters (NCs) of transition metals like cobalt or nickel have widespread applications in drug delivery and water purification, with smaller NCs exhibiting improved functionalities. Downsizing NCs is, however, usually challenging. Now, scientists have demonstrated functional NC formation with atomic-scale precision. They successfully grew cobalt NCs on flat copper surfaces using molecular arrays as traps. This breakthrough paves the way for advancements like single-atom catalysis and spintronics miniaturization.

Computer Science: Quantum Computers Physics: General Physics: Quantum Computing Physics: Quantum Physics
Published

Scientists pull off quantum coup      (via sciencedaily.com)     Original source 

Scientists have discovered a first-of-its-kind material, a 3D crystalline metal in which quantum correlations and the geometry of the crystal structure combine to frustrate the movement of electrons and lock them in place.

Biology: Botany Biology: General Ecology: Endangered Species Ecology: Invasive Species Ecology: Nature Ecology: Trees Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Back from the dead: Tropical tree fern repurposes its dead leaves      (via sciencedaily.com)     Original source 

Plant biologists report that a species of tree fern found only in Panama reanimates its own dead leaf fronds, converting them into root structures that feed the mother plant. The fern, Cyathea rojasiana, reconfigures these 'zombie leaves,' reversing the flow of water to draw nutrients back into the plant.

Biology: Biochemistry Biology: Microbiology Biology: Zoology Ecology: Animals Ecology: Invasive Species
Published

West Nile virus emergence and spread in Europe found to be positively associated with agricultural activities      (via sciencedaily.com)     Original source 

The spread of West Nile virus in Europe is strongly linked to agricultural activities, urbanization, and bird migration, according to new research.