Showing 20 articles starting at article 321
< Previous 20 articles Next 20 articles >
Categories: Biology: General, Physics: Optics
Published Visualizing short-lived intermediate compounds produced during chemical reactions



Immobilizing small synthetic molecules inside protein crystals proves to be a promising avenue for studying intermediate compounds formed during chemical reactions, scientists report. By integrating this method with time-resolved serial femtosecond crystallography, they successfully visualized reaction dynamics and rapid structural changes occurring within reaction centers immobilized inside protein crystals. This innovative strategy holds significant potential for the intelligent design of drugs, catalysts, and functional materials.
Published Brain size riddle solved as humans exceed evolution trend



The largest animals do not have proportionally bigger brains -- with humans bucking this trend -- a new study has revealed.
Published GeneMAP discovery platform will help define functions for 'orphan' metabolic proteins



Researchers have developed a discovery platform to probe the function of genes involved in metabolism -- the sum of all life-sustaining chemical reactions. The investigators used the new platform, called GeneMAP (Gene-Metabolite Association Prediction), to identify a gene necessary for mitochondrial choline transport.
Published Researchers find biological clues to mental health impacts of prenatal cannabis exposure



Researchers outline some of the intermediate biological steps that could play into how prenatal cannabis exposure leads to behavioral issues down the line.
Published Not so selfish after all: Viruses use freeloading genes as weapons



Certain pieces of DNA have been labeled as 'selfish genetic elements' due to notions that they don't contribute to a host organism's survival. Instead, researchers have now discovered that these elements have been weaponized and play a crucial role by cutting off a competitor's ability to reproduce.
Published Scientists map how deadly bacteria evolved to become epidemic



Pseudomonas aeruginosa -- an environmental bacteria that can cause devastating multidrug-resistant infections, particularly in people with underlying lung conditions -- evolved rapidly and then spread globally over the last 200 years, probably driven by changes in human behavior, a new study has found.
Published Single atoms show their true color



A new technique reveals single atom misfits and could help design better semiconductors used in modern and future electronics.
Published Never-before-seen view of gene transcription captured



New tech reveals findings that address long-standing theories about how bacteria begin the process of making RNA from DNA.
Published Do genes-in-pieces code for proteins that fold in pieces?



A new study offers new insights into the evolution of foldable proteins.
Published Researchers uncover key mechanisms in chromosome structure development



Researchers are making strides in understanding how chromosome structures change throughout the cell's life cycle.
Published Climate change drives tree species towards colder, wetter regions



Climate change is likely to drive tree species towards colder and wetter regions.
Published Two new species of Psilocybe mushrooms discovered in southern Africa



In a new paper, researchers and citizen mycologists describe the two new species as Psilocybe ingeli and Psilocybe maluti. The paper also contains information on the traditional use of P. maluti by Basotho traditional healers from the mountain kingdom of Lesotho. According to the researchers, this appears to be the only recorded first-hand report of hallucinogenic mushrooms being used traditionally in Africa.
Published Using visible light to make pharmaceutical building blocks



Chemists have discovered a way to use visible light to synthesize a class of compounds particularly well suited for use in pharmaceuticals. The class of compounds, called azetidines, had been previously identified as a good candidate to build therapeutic drugs, but the compounds are difficult to produce in chemical reactions. Now, a team has developed a method to produce a specific class of azetidines called monocyclic azetidines using visible light and a photocatalyst.
Published Precise and less expensive 3D printing of complex, high-resolution structures



Researchers have developed a new two-photon polymerization technique that uses two lasers to 3D print complex high-resolution structures. The advance could make this 3D printing process less expensive, helping it find wider use in a variety of applications, from consumer electronics to the biomedical field.
Published Giant clams may hold the answers to making solar energy more efficient



Solar panel and biorefinery designers could learn a thing or two from iridescent giant clams living near tropical coral reefs, according to a new study. This is because giant clams have precise geometries -- dynamic, vertical columns of photosynthetic receptors covered by a thin, light-scattering layer -- that may just make them the most efficient solar energy systems on Earth.
Published Advancing toward a preventative HIV vaccine



A major challenge in developing a vaccine for HIV is that the virus mutates fast -- very fast. Although a person initially becomes infected with one or a few HIV strains, the virus replicates and mutates quickly, resulting in a 'swarm' of viral strains existing in a single body.
Published Nuclear spectroscopy breakthrough could rewrite the fundamental constants of nature



Raising the energy state of an atom's nucleus using a laser, or exciting it, would enable development of the most accurate atomic clocks ever to exist. This has been hard to do because electrons, which surround the nucleus, react easily with light, increasing the amount of light needed to reach the nucleus. By causing the electrons to bond with fluorine in a transparent crystal, UCLA physicists have finally succeeded in exciting the neutrons in a thorium atom's nucleus using a moderate amount of laser light. This accomplishment means that measurements of time, gravity and other fields that are currently performed using atomic electrons can be made with orders of magnitude higher accuracy.
Published Optoelectronics gain spin control from chiral perovskites and III-V semiconductors



A research effort has made advances that could enable a broader range of currently unimagined optoelectronic devices.
Published A new breakthrough in understanding regeneration in a marine worm



The sea worm Platynereis dumerilii is only a few centimeters long but has a remarkable ability: in just a few days, it can regenerate entire parts of its body after an injury or amputation. By focusing more specifically on the mechanisms at play in the regeneration of this worm's tail, a research team has observed that gut cells play a role in the regeneration of the intestine as well as other tissues such as muscle and epidermis.
Published Near chromosome-level genome of the Mojave poppy bee



Scientists have developed a near chromosome-level genome for the Mojave poppy bee, a specialist pollinator of conservation concern.