Showing 20 articles starting at article 361
< Previous 20 articles Next 20 articles >
Categories: Biology: General, Chemistry: Biochemistry
Published Opening the right doors: 'Jumping gene' control mechanisms revealed



International joint research led by Akihisa Osakabe and Yoshimasa Takizawa of the University of Tokyo has clarified the molecular mechanisms in thale cresses (Arabidopsis thaliana) by which the DDM1 (Decreased in DNA Methylation 1) protein prevents the transcription of 'jumping genes.' DDM1 makes 'jumping genes' more accessible for transcription-suppressing chemical marks to be deposited. Because a variant of this protein exists in humans, the discovery provides insight into genetic conditions caused by such 'jumping gene' mutations.
Published Bacteria form glasslike state



Dense E.coli bacteria have several similar qualities to colloidal glass. Colloids are substances made up of small particles suspended within a fluid, like ink for example. When these particles become higher in density and more packed together, they form a 'glassy state.' When researchers multiplied E.coli bacteria within a confined area, they found that they exhibited similar characteristics. More surprisingly, they also showed some other unique properties not typically found in glass-state materials. This study contributes to our understanding of glassy 'active matter,' a relatively new field of materials research which crosses physics and life science. In the long term, the researchers hope that these results will contribute to developing materials with new functional capabilities, as well as aiding our understanding of biofilms (where microorganisms stick together to form layers on surfaces) and natural bacterial colonies.
Published First ever 3D reconstruction of 52,000-year-old woolly mammoth chromosomes thanks to serendipitously freeze-dried skin



An international research team has assembled the genome and 3D chromosomal structures of a 52,000-year-old woolly mammoth -- the first time such a feat has been achieved for any ancient DNA sample. The fossilized chromosomes, which are around a million times longer than most ancient DNA fragments, provide insight into how the mammoth's genome was organized within its living cells and which genes were active within the skin tissue from which the DNA was extracted. This unprecedented level of structural detail was retained because the mammoth underwent freeze-drying shortly after it died, which meant that its DNA was preserved in a glass-like state.
Published Researchers pinpoint brain cells that delay first bite of food



Do you grab a fork and take a first bite of cake, or say no and walk away? Our motivation to eat is driven by a complex web of cells in the brain that use signals from within the body, as well as sensory information about the food in front of us, to determine our behaviors. Now, scientists have identified a group of neurons in a small and understudied region of the brain -- the parasubthalamic nucleus (PSTN) -- that controls when an animal decides to take a first bite of food.
Published Novel genome editing approach restores hearing in adult preclinical models with genetic deafness



Researchers restored hearing in preclinical mouse models with a specific form of inherited deafness called DFNA50 caused by mutations in microRNA, by using a novel in vivo CRISPR genome editing approach. Since mouse and human microRNAs have identical sequences, the researchers hope this work can one day be translated into applications for humans.
Published Pumpkin disease not evolving, could make a difference for management



The pathogen that causes bacterial spot is very good at what it does. Forming small lesions on the rinds of pumpkins, melons, cucumbers, and other cucurbits, it mars the fruits' appearance and ushers in secondary pathogens that lead to rot and severe yield loss. The bacterium, Xanthomonas cucurbitae, is so successful that it has had no reason to evolve through time or space.
Published Atlas of proteins reveals inner workings of cells



Researchers discover how proteins behave inside cells using AI, which has the potential to guide drug design.
Published Discovery of a new defense mechanism in bacteria



When confronted with an antibiotic, toxic substance, or other source of considerable stress, bacteria are able to activate a defense mechanism using cell-to-cell communication to 'warn' unaffected bacteria, which can then anticipate, shield themselves and spread the warning signal.
Published A new material derived from graphene improves the performance of neuroprostheses



Neuroprostheses allow the nervous system of a patient who has suffered an injury to connect with mechanical devices that replace paralyzed or amputated limbs. A study demonstrates in animal models how EGNITE, a derivative of graphene, allows the creation of smaller electrodes, which can interact more selectively with the nerves they stimulate, thus improving the efficacy of the prostheses.
Published Research reveals the most complete dinosaur discovered in the UK in a century



The most complete dinosaur discovered in the UK in the last 100 years, with a pubic hip bone the size of a 'dinner plate', has been described in a new article.
Published Not so simple: Mosses and ferns offer new hope for crop protection



Mosses, liverworts, ferns and algae may offer an exciting new research frontier in the global challenge of protecting crops from the threat of disease.
Published The detection of a massive harmful algal bloom in the Arctic prompts real-time advisories to western Alaskan communities



A summer 2022 research cruise that detected a massive and highly toxic harmful algal bloom (HAB) in the Bering Strait has provided a dramatic example of science that utilized new technology to track a neurotoxic HAB and effectively communicate that information in real-time to protect remote communities in coastal Alaska.
Published Phage-derived enzyme targets E. faecalis biofilms to mitigate acute graft-versus-host disease



Acute graft-versus-host disease occurs when donor immune cells attack the recipient's tissues after an allogeneic hematopoietic stem cell transplantation (allo-HCT). Researchers recently identified a bacteriophage-derived enzyme called endolysin capable of targeting biofilms formed by Enterococcus faecalis. Their findings offer hope for tailored interventions in allo-HCT.
Published Big gain in battle against harmful bacteria



An unexpected find has enabled important progress to be made in the battle against harmful bacteria.
Published Tackling the challenge of coca plant ID: Wild vs cultivated for cocaine



A new paper reveals that it's not as straightforward as it might seem. Despite decades of data collection by the United Nations Office on Drugs and Crime (UNODC), which has been valuable to monitor changes in areas occupied by illegal coca plantations in South America, there is no reliable scientific method to distinguish between different types of coca plants.
Published Study examines tree adaptability to climate change



Many trees could expand their ranges by more than 25 percent based on their potential temperature tolerances.
Published New one-step method to make multiple edits to a cell's genome



A team of scientists have developed a new method that enables them to make precise edits in multiple locations within a cell -- all at once. Using molecules called retrons, they created a tool that can efficiently modify DNA in bacteria, yeast, and human cells.
Published Moving from the visible to the infrared: Developing high quality nanocrystals



Awarded the 2023 Nobel Prize in Chemistry, quantum dots have a wide variety of applications ranging from displays and LED lights to chemical reaction catalysis and bioimaging. These semiconductor nanocrystals are so small -- on the order of nanometers -- that their properties, such as color, are size dependent, and they start to exhibit quantum properties. This technology has been really well developed, but only in the visible spectrum, leaving untapped opportunities for technologies in both the ultraviolet and infrared regions of the electromagnetic spectrum.
Published Implantable LED device uses light to treat deep-seated cancers



Certain types of light have proven to be an effective, minimally invasive treatment for cancers located on or near the skin when combined with a light-activated drug. But deep-seated cancers have been beyond the reach of light's therapeutic effects. To change this, engineers and scientists have devised a wireless LED device that can be implanted. This device, when combined with a light-sensitive dye, not only destroys cancer cells, but also mobilizes the immune system's cancer-targeting response.
Published Global database reveals large gaps in our knowledge of four-footed animals



Researchers developed TetrapodTraits -- a global database of animals with four feet -- which can now be applied for better ecology, evolution and conservation research.