Showing 20 articles starting at article 181
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Chemistry: Inorganic Chemistry
Published Algae offer real potential as a renewable electricity source



The need to transition away from fossil fuels to more sustainable energy production is critical. That's why a team of researchers is looking at a potential power source that not only produces no carbon emissions but removes carbon as it works: algae.
Published Semiconductor doping and electronic devices: Heating gallium nitride and magnesium forms superlattice



A study revealed that a simple thermal reaction of gallium nitride with metallic magnesium results in the formation of a distinctive superlattice structure. This represents the first time researchers have identified the insertion of 2D metal layers into a bulk semiconductor. By carefully observing materials through various cutting-edge characterization techniques, the researchers uncovered new insights into the process of semiconductor doping and elastic strain engineering.
Published Looking for a new battery platform? Focus on the essentials



In facing life's many challenges, we often opt for complex approaches to finding solutions. Yet, upon closer examination, the answers are often simpler than we expect, rooted in the core "essence" of the issue. This approach was demonstrated by a research team in their publication on addressing the inherent issues of solid-state batteries.
Published Researchers engineer new approach for controlling thermal emission



If a material absorbs light, it will heat up. That heat must go somewhere, and the ability to control where and how much heat is emitted can protect or even hide such devices as satellites. An international team of researchers has published a novel method for controlling this thermal emission in Science.
Published Novel Genetic Clock discovers oldest known marine plant



An international research team has discovered the oldest known marine plant using a novel genetic clock. This 1400-year-old seagrass clone from the Baltic Sea dates back to the Migration Period. The research project is a significant step towards better understanding and protecting marine ecosystems.
Published A protein that enables smell--and stops cell death



While smell plays a considerable role in the social interactions of humans -- for instance, signaling fear or generating closeness -- for ants, it is vitally important. Researchers have found that a key protein named Orco, essential for the function of olfactory cells, is also critical for the cells' survival in ants.
Published Changes Upstream: RIPE team uses CRISPR/Cas9 to alter photosynthesis for the first time



Scientists used CRISPR/Cas9 to increase gene expression in rice by changing its upstream regulatory DNA. While other studies have used the technology to knock out or decrease the expression of genes, this study, is an unbiased gene-editing approach to increase gene expression and downstream photosynthetic activity. The approach is more difficult than transgenic breeding, but could potentially preempt regulatory issues by changing DNA already within the plant, allowing the plants to get in the hands of farmers sooner.
Published Perturbations simplify the study of 'super photons'



Thousands of particles of light can merge into a type of 'super photon' under suitable conditions. Physicists call such a state a photon Bose-Einstein condensate. Researchers have now shown that this exotic quantum state obeys a fundamental theorem of physics. This finding now allows one to measure properties of photon Bose-Einstein condensates which are usually difficult to access.
Published Silkworms help grow better organ-like tissues in labs



Biomedical engineers have developed a silk-based, ultrathin membrane that can be used in organ-on-a-chip models to better mimic the natural environment of cells and tissues within the body. When used in a kidney organ-on-a-chip platform, the membrane helped tissues grow to recreate the functionality of both healthy and diseased kidneys.
Published Fish out of water: How killifish embryos adapted their development



The annual killifish lives in regions with extreme drought. A research group now reports that the early embryogenesis of killifish diverges from that of other species. Unlike other fish, their body structure is not predetermined from the outset. This could enable the species to survive dry periods unscathed.
Published Crystal engineering modifies 2D metal halide perovskites into 1D nanowires



Engineers have created a patent-pending method that creates layered perovskite nanowires with exceptionally well-defined and flexible cavities that exhibit a wide range of unusual optical properties beyond conventional perovskites.
Published Myelination in the brain may be key to 'learning' opioid addiction



Scientists have found that the process of adaptive myelination, which helps the brain learn new skills, can also promote addiction to opioids.
Published New technique reveals how gene transcription is coordinated in cells



Researchers invented a technique that allows them to observe which genes and enhancers are active in a cell at the same time. This could help them determine which enhancers control which genes and may reveal potential new drug targets for genetic disorders.
Published Father's diet before conception influences children's health



A recent study provides new insights into how fathers' diets and overweight can affect their children's health even before conception. The findings of the study can help develop preventive health measures for men wishing to become fathers: The healthier the father's diet, the lower the risk for their children to develop obesity or diseases such as diabetes later in life.
Published A new way of designing auxetic materials



Auxetics defy common sense, widening when stretched and narrowing when compressed. Researchers have now made the process of using them much easier, paving the way for new types of auxetic products -- from better sneaker insoles to blast-resilient buildings.
Published Towards next-gen functional materials: direct observation of electron transfer in solids



Nanoscale electron transfer (ET) in solids is fundamental to the development of multifunctional materials. However, ET in solids is not yet clearly understood. Now, researchers achieved a direct observation of solid-state ET through X-ray crystal analysis by fabricating a novel double-walled non-covalent crystalline nanotube, which can absorb electron donor molecules and maintain its crystalline structure during ET. This innovative approach can lead to the design of novel functional materials soon.
Published Observing ultrafast photoinduced dynamics in a halogen-bonded supramolecular system



Researchers uncover how the halogen bond can be exploited to direct sequential dynamics in the multi-functional crystals, offering crucial insights for developing ultrafast-response times for multilevel optical storage.
Published Altered carbon points toward sustainable manufacturing



Researchers develop a vastly more productive way to convert carbon dioxide into useful materials and compounds.
Published Transition-metal-free zeolite catalyst for direct conversion of methane to methanol



Direct oxidation of methane to methanol is dominated by transition- or noble-metal-based catalysts, thus making the reaction quite expensive. To make the process efficient and cost-effective, researchers developed a transition-metal-free aluminosilicate ferrierite zeolite catalyst that can produce methanol by using methane and nitrous oxide as starting materials. The new catalyst ensures excellent methanol production efficiency, one of the highest recorded rates in the literature thus far.
Published The embryo assembles itself



Biological processes depend on puzzle pieces coming together and interacting. Under specific conditions, these interactions can create something new without external input. This is called self-organization, as seen in a school of fish or a flock of birds. Interestingly, the mammalian embryo develops similarly. Scientists now introduce a mathematical framework that analyzes self-organization from a single cell to a multicellular organism.