Showing 20 articles starting at article 241
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Energy: Nuclear
Published Scientists develop new biocontainment method for industrial organisms



Researchers have developed a new biocontainment method for limiting the escape of genetically engineered organisms used in industrial processes.
Published Extra fingers and hearts: Pinpointing changes to our genetic instructions that disrupt development



Scientists can now predict which single-letter changes to the DNA within our genomes will alter genetic instructions and disrupt development, leading to changes such as the growth of extra digits and hearts. Such knowledge opens the door to predictions of which enhancer variants underlie disease in order to harness the full potential of our genomes for better human health.
Published Computer-engineered DNA to study cell identities



A new computer program allows scientists to design synthetic DNA segments that indicate, in real time, the state of cells. It will be used to screen for anti-cancer or viral infections drugs, or to improve gene and cell-based immunotherapies.
Published Scientists create effective 'spark plug' for direct-drive inertial confinement fusion experiments



Scientists completed several successful attempts to fire 28 kilojoules of laser energy at small capsules filled with deuterium and tritium fuel, causing the capsules to implode and produce a plasma hot enough to initiate fusion reactions between the fuel nuclei. These results demonstrate an effective 'spark plug' for direct-drive methods of inertial confinement fusion.
Published Mechanism discovered that protects tissue after faulty gene expression



A study has identified a protein complex that is activated by defects in the spliceosome, the molecular scissors that process genetic information. Future research could lead to new therapeutic approaches to treat diseases caused by faulty splicing.
Published The arrangement of bacteria in biofilms affects their sensitivity to antibiotics



Many bacteria form an antibiotic-resistant slime. Research detailing that slime's structure could help lead to new treatments.
Published Physicists develop highly robust time crystal



Researchers recently succeeded in producing a highly durable time crystal that lived millions of times longer than could be shown in previous experiments. By doing so, they have corroborated an extremely interesting phenomenon that Nobel Prize laureate Frank Wilczek postulated around ten years ago and which had already found its way into science fiction movies.
Published LSH genes associated with defining the shapes of stems, flowers and leaves required for N-fixing root nodules



The developmental regulators that confer the identity of N-fixing root nodules belong to a transcription factor family (LSH) more commonly associated with defining the shapes of stems, flowers and leaves.
Published Using computers to design proteins allows researchers to make tunable hydrogels that can form both inside and outside of cells



New research demonstrates a new class of hydrogels that can form not just outside cells, but also inside of them. These hydrogels exhibited similar mechanical properties both inside and outside of cells, providing researchers with a new tool to group proteins together inside of cells.
Published DNA particles that mimic viruses hold promise as vaccines



Using a DNA-based delivery particle, researchers created a vaccine that can induce a strong antibody response against SARS-CoV-2.
Published 'Genomic time machine' reveals secrets of our DNA



Researchers reveal a novel method to uncover bits of our genetic blueprint that come from ancient genetic parasites, offering fresh insights into human evolution and health.
Published How macrophages regulate regenerative healing in spiny mice



A team of researchers is delving deeper into the science behind how spiny mice can regenerate lost tissue and using what they learn to trigger regeneration in other types of mice -- advances which one day may be translated into humans. Whereas adult laboratory mice heal injuries with scar tissue, spiny mice have the unique ability to regrow lost skin and regenerate musculoskeletal tissues in their body.
Published Cellular scaffolding rewired to make microscopic railways



Researchers were able to control the growth of thin, branching networks that support cellular structure and help cells function. The networks, called microtubules, can exert force and precisely transport chemicals at a subcellular level.
Published Researchers pinpoint most likely source of HIV rebound infection



Antiretroviral therapy (ART) does an excellent job at suppressing HIV to undetectable levels in the blood. However, small amounts of latent virus hide throughout the body, and when treatment is stopped, it opens the door for the virus to rebound. Researchers identified which tissues SIV, the nonhuman primate version of HIV, reemerges from first, just seven days after ART is stopped.
Published Liquid lithium on the walls of a fusion device helps the plasma within maintain a hot edge



Emerging research suggests it may be easier to use fusion as a power source if liquid lithium is applied to the internal walls of the device housing the plasma. Past experiments studied solid lithium coatings and found they could enhance a plasma. The researchers were pleased they could yield similar results with liquid lithium, as it's better suited for use in a large-scale tokamak.
Published World's first successful embryo transfer in rhinos paves the way for saving the northern white rhinos from extinction



Scientists have succeeded in achieving the world's first pregnancy of a rhinoceros after an embryo transfer. The southern white rhino embryo was produced in vitro from collected egg cells and sperm and transferred into a southern white rhino surrogate mother at the Ol Pejeta Conservancy in Kenya on September 24, 2023. The BioRescue team confirmed a pregnancy of 70 days with a well-developed 6.4 cm long male embryo. The successful embryo transfer and pregnancy are a proof of concept and allow to now safely move to the transfer of northern white rhino embryos -- a cornerstone in the mission to save the northern white rhino from extinction.
Published New tool reveals gene behavior in bacteria



Researchers showed that the way in which genes are turned on and off as bacteria grow provide clues to their regulation.
Published Gravity helps show strong force strength in the proton



New research conducted by nuclear physicists is using a method that connects theories of gravitation to interactions among the smallest particles of matter. The result is insight into the strong force, a powerful mediator of particle interactions in the subatomic realm. The research has revealed, for the first time, a snapshot of the distribution of the shear strength of the strong force inside the proton -- or how strong an effort must be to overcome the strong force to move an object it holds in its grasp. At its peak, the nuclear physicists found that a force of over four metric tons would be required to overcome the binding power of the strong force.
Published DNA construction led to unexpected discovery of important cell function



Researchers have used DNA origami, the art of folding DNA into desired structures, to show how an important cell receptor can be activated in a previously unknown way. The result opens new avenues for understanding how the Notch signalling pathway works and how it is involved in several serious diseases.
Published Study throws our understanding of gene regulation for a loop



To function properly, the genetic material is highly organized into loop structures that often bring together widely separated sections of the genome critical to the regulation of gene activity. Scientists now address how these loops can help repress or silence gene activity, with potentially far-reaching effects on human health.