Showing 20 articles starting at article 461

< Previous 20 articles        Next 20 articles >

Categories: Biology: Developmental, Energy: Nuclear

Return to the site home page

Anthropology: General Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Zoology Ecology: Sea Life Geoscience: Earth Science Paleontology: General
Published

Scientists investigate the evolution of animal developmental mechanisms, show how some of Earth's earliest animals evolved      (via sciencedaily.com)     Original source 

Lacking bones, brains, and even a complete gut, the body plans of simple animals like sea anemones appear to have little in common with humans and their vertebrate kin. Nevertheless, new research shows that appearances can be deceiving, and that a common genetic toolkit can be deployed in different ways to drive embryological development to produce very different adult body plans. It is well established that sea anemones, corals, and their jellyfish relatives shared a common ancestor with humans that plied the Earth's ancient oceans over 600 million years ago. A new study from the Gibson Lab, published in Current Biology on June 13, 2023, illuminates the genetic basis for body plan development in the starlet sea anemone, Nematostella vectensis. This new knowledge paints a vivid picture of how some of the earliest animals on earth progressed from egg to embryo to adult.

Biology: Developmental Biology: Evolutionary Biology: General Biology: Zoology Paleontology: General
Published

Which came first: The reptile or the egg?      (via sciencedaily.com)     Original source 

The earliest reptiles, birds and mammals may have borne live young, researchers have revealed.

Biology: Biochemistry Biology: Cell Biology Biology: Developmental Biology: General
Published

New research identifies cells linking chronic psychological stress to inflammatory bowel disease      (via sciencedaily.com)     Original source 

For the first time, cells involved with the communication between stress responses in the brain and inflammation in the gastrointestinal (GI) tract have been identified in animal models. Glial cells, which support neurons, communicate stress signals from the central nervous system (CNS) to the semi-autonomous nervous system within the gastrointestinal (GI) tract, called the enteric nervous system (ENS). These psychological stress signals can cause inflammation and exacerbate symptoms of inflammatory bowel disease (IBD).

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Marine Biology: Microbiology Biology: Molecular Ecology: Sea Life Environmental: Water Geoscience: Oceanography
Published

When water temperatures change, the molecular motors of cephalopods do too      (via sciencedaily.com)     Original source 

Working with live squid hatchlings, scientists find the animals can tune their proteome on the fly in response to changes in ocean temperature via the unique process of RNA recoding. The findings inspire new questions about basic protein function.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular Ecology: Animals Offbeat: Earth and Climate Offbeat: General Offbeat: Plants and Animals
Published

Octopuses rewire their brains to adapt to seasonal temperature shifts      (via sciencedaily.com)     Original source 

Octopuses don't thermoregulate, so their powerful brains are exposed to -- and potentially threatened by -- changes in temperature. Researchers report that two-spot octopuses adapt to seasonal temperature shifts by producing different neural proteins under warm versus cool conditions. The octopuses achieve this by editing their RNA, the messenger molecule between DNA and proteins. This rewiring likely protects their brains, and the researchers suspect that this unusual strategy is used widely amongst octopuses and squid.

Chemistry: Biochemistry Chemistry: Inorganic Chemistry Energy: Nuclear Physics: General Physics: Quantum Physics
Published

Calculation shows why heavy quarks get caught up in the flow      (via sciencedaily.com)     Original source 

Theorists have calculated how quickly a melted soup of quarks and gluons -- the building blocks of protons and neutrons -- transfers its momentum to heavy quarks. The calculation will help explain experimental results showing heavy quarks getting caught up in the flow of matter generated in heavy ion collisions.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Ecology: Invasive Species Ecology: Nature Ecology: Trees Environmental: Biodiversity Environmental: Ecosystems Environmental: General
Published

Older trees accumulate more mutations than their younger counterparts      (via sciencedaily.com)     Original source 

A study of the relationship between the growth rate of tropical trees and the frequency of genetic mutations they accumulate suggests that older, long-lived trees play a greater role in generating and maintaining genetic diversity than short-lived trees.

Biology: Biochemistry Biology: Developmental Biology: General Environmental: General
Published

Electrical synapses in the neural network of insects found to have unexpected role in controlling flight power      (via sciencedaily.com)     Original source 

A team of experimental neurobiologists and theoretical biologists has managed to solve a mystery that has been baffling scientists for decades. They have been able to determine the nature of the electrical activity in the nervous system of insects that controls their flight. They report on a previously unknown function of electrical synapses employed by fruit flies during flight.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular
Published

DNA damage repaired by antioxidant enzymes      (via sciencedaily.com)     Original source 

In crisis, the nucleus calls antioxidant enzymes to the rescue. The nucleus being metabolically active is a profound paradigm shift with implications for cancer research.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Engineers report low-cost human biomarker sensor designs      (via sciencedaily.com)     Original source 

Researchers have developed a low-cost, RNA-based technology to detect and measure biomarkers, which can help decode the body's physiology. The presence of protein biomarkers can indicate chronic or acute conditions, from arthritis to cancer to bacterial infections, for which conventional tests can cost anywhere from $100 to upwards of $1,000. The new technology can perform the same measurement for about a dollar.

Chemistry: Inorganic Chemistry Energy: Nuclear Environmental: General Physics: General Physics: Optics Space: Astrophysics Space: General Space: Structures and Features
Published

Under pressure: Foundations of stellar physics and nuclear fusion investigated      (via sciencedaily.com)     Original source 

Research using the world's most energetic laser has shed light on the properties of highly compressed matter -- essential to understanding the structure of giant planets and stars, and to develop controlled nuclear fusion, a process that could harvest carbon-free energy.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

Scientists unveil RNA-guided mechanisms driving cell fate      (via sciencedaily.com)     Original source 

The early stages of embryonic development contain many of life's mysteries. Unlocking these mysteries can help us better understand early development and birth defects, and help develop new regenerative medicine treatments. Researchers have now characterized a critical time in mammalian embryonic development using powerful and innovative imaging techniques.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Ecology: Endangered Species Geoscience: Environmental Issues Geoscience: Geochemistry
Published

Groundbreaking images of root chemicals offer new insights on plant growth      (via sciencedaily.com)     Original source 

Applying imaging technology to plant roots, researchers have developed a new understanding of chemicals that are responsible for plant growth. The chemical 'roadmap' identifies where key molecules are distributed along corn roots and how their placement factors into the plant's maturation.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

Researchers successfully induce primate oocytes in the lab      (via sciencedaily.com)     Original source 

The many types of cells in the human body are produced through the process of differentiation, in which stem cells are converted to more specialized types. Currently, it is challenging for researchers to control the differentiation of stem cells in the lab (in vitro). Of particular interest are oocytes, which are female germ cells that develop into eggs. Understanding their development could have far-ranging impacts, from infertility treatment to conservation of endangered species. A new study has successfully induced meiotic (dividing) oocytes from the embryonic stem cells of cynomolgus monkeys, which share many physiological traits with humans. By establishing a culture method for inducing the differentiation of meiotic oocytes, the researchers aimed to shed light on germ cell development in both humans and other primates.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Microbiology
Published

Gene editing tool could help reduce spread of antimicrobial resistance      (via sciencedaily.com)     Original source 

A new tool which could help reduce the spread of antimicrobial resistance is showing early promise, through exploiting a bacterial immune system as a gene editing tool.

Energy: Nuclear Physics: General Physics: Optics
Published

Keeping time with an atomic nucleus      (via sciencedaily.com)     Original source 

Nuclear clocks could allow scientists to probe the fundamental forces of the universe in the future. Researchers have made a crucial advance in this area as part of an international collaboration.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: Evolutionary Biology: General Biology: Genetics Biology: Molecular
Published

Where do our limbs come from?      (via sciencedaily.com)     Original source 

Scientists have uncovered new clues about the origin of paired appendages -- a major evolutionary step that remains unresolved and highly debated.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species Environmental: Water
Published

Researchers find new mechanism for sodium salt detoxification in plants      (via sciencedaily.com)     Original source 

A team of researchers has found a mechanism in thale cress (Arabidopsis thaliana) which enables plants to provide protection against salt stress for their sensitive stem cells in the meristem at the root tip.

Biology: Biochemistry Biology: Biotechnology Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Microbiology Biology: Molecular
Published

A multiomics approach provides insights into flu severity      (via sciencedaily.com)     Original source 

Researchers were able to identify changes in the accessibility (that is, the 'readability') of transposable elements. To do this, the researchers used an approach combining various sets of multiomics data, which characterize and quantify collections of biomolecules in cells or organisms. One was the transcriptome, which consists of all copies of RNA transcribed from DNA in the cell. The other was the epigenome, which is the collection of chemical changes to DNA that modify gene expression. An advantage of this multiomics approach is that they were able to identify families of transposable elements with changes in accessibility, which would have likely been missed by previous approaches.

Biology: Biochemistry Biology: Biotechnology Biology: Botany Biology: Cell Biology Biology: Developmental Biology: General Biology: Genetics Biology: Molecular Ecology: Endangered Species
Published

How plants use sugar to produce roots      (via sciencedaily.com)     Original source 

Along with sugar reallocation, a basic molecular mechanism within plants controls the formation of new lateral roots. Botanists have demonstrated that it is based on the activity of a certain factor, the target of rapamycin (TOR) protein. A better understanding of the processes that regulate root branching at the molecular level could contribute to improving plant growth and therefore crop yields, according to the research team leader.