Showing 20 articles starting at article 421
< Previous 20 articles Next 20 articles >
Categories: Biology: Developmental, Energy: Technology
Published Researchers create light-powered yeast, providing insights into evolution, biofuels, cellular aging



Researchers have engineered one of the world's first yeast cells able to harness energy from light, expanding our understanding of the evolution of this trait -- and paving the way for advancements in biofuel production and cellular aging.
Published Scientists use heat to create transformations between skyrmions and antiskyrmions



In an experiment that could help the development of new spintronics devices with low energy consumption, researchers have used heat and magnetic fields to create transformations between spin textures -- magnetic vortices and antivortices known as skyrmions and antiskyrmions -- in a single crystal thin plate device. Importantly, they achieved this at room temperature.
Published Aging mouse sperm affects MicroRNA, increasing the risk of neurodevelopmental disorders



Much is known about the added complication to pregnancy when it comes to the age of the mother, but recent studies show that the age of the father can also heighten the risk of neurodevelopmental disorders. A team of researchers has explored the impacts of paternal aging on microRNAs, the molecules that play a crucial role in regulating gene expression.
Published Lab-grown retinas explain why people see colors dogs can't



With human retinas grown in a petri dish, researchers discovered how an offshoot of vitamin A generates the specialized cells that enable people to see millions of colors, an ability that dogs, cats, and other mammals do not possess. The findings increase understanding of color blindness, age-related vision loss, and other diseases linked to photoreceptor cells. They also demonstrate how genes instruct the human retina to make specific color-sensing cells, a process scientists thought was controlled by thyroid hormones.
Published Highly durable, nonnoble metal electrodes for hydrogen production from seawater



The water electrolysis method, a promising avenue for hydrogen production, relies on substantial freshwater consumption, thereby limiting the regions available with water resources required for water electrolysis . Researchers have developed highly durable electrodes without precious metals to enable direct hydrogen production from seawater.
Published Protein complex discovered to control DNA repair



The repair of damage to genetic material (DNA) in the human body is carried out by highly efficient mechanisms that have not yet been fully researched. A scientific team has now discovered a previously unrecognized control point for these processes. This could lead to a new approach for the development of cancer therapies aimed at inhibiting the repair of damaged cancer cells.
Published Study on lamprey embryos sheds light on the evolutionary origin of vertebrate head



Scientists have investigated lamprey embryos using cutting-edge microscopic techniques to reveal interesting insights about vertebrate head evolution, clarifying an unresolved mystery in basic science.
Published New findings regarding the high efficiency of perovskite solar cells



Free charge carriers in perovskite solar cells likely have a special form of protection from recombination, researchers have discovered. This may be key to the high efficiency of this cell type, which has been increased to over 25 % within a decade.
Published Green wheels, bright skies: Analysis unveils the connection between electric vehicles and photovoltaics



People who own electric vehicles (EVs) are more likely to go a step further and add solar panels to their home, according to an analysis of a behavioral study. Conversely, the impact of owning solar panels also has a bearing on whether a homeowner buys an electric vehicle but not as strongly.
Published Green ammonia could decarbonize 60% of global shipping when offered at just 10 regional fuel ports



A study has found that green ammonia could be used to fulfill the fuel demands of over 60% of global shipping by targeting just the top 10 regional fuel ports. Researchers looked at the production costs of ammonia which are similar to very low sulphur fuels, and concluded that the fuel could be a viable option to help decarbonize international shipping by 2050.
Published Smart skin bacteria are able to secrete and produce molecules to treat acne



An experimental study has shown that a type of skin bacterium can efficiently be engineered to produce a protein to regulate sebum production. This application could treat acne without compromising the homeostasis of the entire skin microbiome.
Published Stranger than friction: A force initiating life



As the potter works the spinning wheel, the friction between their hands and the soft clay helps them shape it into all kinds of forms and creations. In a fascinating parallel, sea squirt oocytes (immature egg cells) harness friction within various compartments in their interior to undergo developmental changes after conception.
Published Large-scale mapping of pig genes could pave the way for new human medicines



Researchers have carried out complex genetic analyses of hundreds of pigs and humans to identify differences and similarities. This new knowledge can be used to ensure healthier pigs for farmers and can help the pharmaceutical industry breed better laboratory pigs for testing new medicines.
Published Life span increases in mice when specific brain cells are activated



A new study identifies, in mice, a critical communication pathway connecting the brain and the body's fat tissue in a feedback loop that appears central to energy production throughout the body. The research suggests that the gradual deterioration of this feedback loop contributes to the increasing health problems that are typical of natural aging.
Published Researchers develop algorithm to determine how cellular 'neighborhoods' function in tissues



Researchers have developed a new AI-powered algorithm to help understand how different cells organize themselves into particular tissues and communicate with one another.
Published Advancing the generation of in-vivo chimeric lungs in mice using rat-derived stem cells



Creating a functional lung using interspecies chimeric animals is an attractive albeit challenging option for lung transplantation, requiring more research on the viable conditions needed for organ generation. A new study uses reverse-blastocyst complementation and tetraploid-based organ complementation methods to first determine these conditions in lung-deficient mice and then to generate rat-derived lungs in these mice. It provides useful insights on the intrinsic species-specific barriers and factors associated with lung development in interspecies chimeric animals.
Published Using berry phase monopole engineering for high-temperature spintronic devices



Spin-orbit torque (SOT), an important phenomenon for developing ultrafast and low-power spintronic devices, can be enhanced through Berry phase monopole engineering at high temperatures. In a new study, the temperature dependence of the intrinsic spin Hall effect of TaSi2 was investigated. The results suggest that Berry phase monopole engineering is an effective strategy for achieving high-temperature SOT spintronic devices.
Published High-performance stretchable solar cells



Engineers have succeeded in implementing a stretchable organic solar cell by applying a newly developed polymer material that demonstrated the world's highest photovoltaic conversion efficiency (19%) while functioning even when stretched for more than 40% of its original state. This new conductive polymer has high photovoltaic properties that can be stretched like rubber. The newly developed polymer is expected to play a role as a power source for next-generation wearable electronic devices.
Published New roles for autophagy genes in cellular waste management and aging



Autophagy, which declines with age, may hold more mysteries than researchers previously suspected. Scientists have now uncovered possible novel functions for various autophagy genes, which may control different forms of disposal including misfolded proteins -- and ultimately affect aging.
Published Nematode proteins shed light on infertility



Biologists developed a method for illuminating the intricate interactions of the synaptonemal complex in the nematode C. elegans. The authors identified a trio of protein segments that guide chromosomal interactions, and pinpointed the location where they interact with each other. Their novel method uses a technique known as genetic suppressor screening, which can serve as a blueprint for research on large cellular assemblies that resist traditional structural analysis.